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Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak 
value for specific coupling strengths [14]. Here we give a general expression for the modular value in 
the n-dimensional Hilbert space using the weak values up to (n − 1)th order of an arbitrary observable 
for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a 
linear relationship between the weak value and the modular value. We also relate the modular value of 
the sum of observables to the weak value of their product.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The “weak value” is a groundbreaking concept that was discov-
ered by Aharonov, Albert, and Vaidman [1]. The weak value of an 
observable Â is defined as the expectation value of Â via weak 
measurements performed between the pre-selection of an initial 
state and the post-selection of a final state. The weak value of Â is 
given by 〈 Â〉w = 〈φ| Â|ψ〉/〈φ|ψ〉. Contrary to the usual expectation 
values, a weak value might even lie far outside the range of eigen-
values of the observable Â and can even be a complex number. 
The properties of the weak value have been extensively studied 
from theoretical and experimental points of view in recent years. 
Particularly, the cases of nonlocal observables are interesting [2–4], 
including EPR paradox [5–7], Hardy’s paradox [8–11], and Cheshire 
Cat experiment [12,13].

The most studies on weak values focus on a continuous-variable 
pointer of the measuring device, which distributes in Gaussian dis-
tribution, and assume that the interaction between the system and 
the meter is weak. Y. Kedem and L. Vaidman, however, recently 
considered the cases where the meter is a qubit, and also the in-
teraction between the system and meter qubit is arbitrarily strong 
[14]. The system, which does not have to be a qubit, is conditioned 
by an initial state vector |ψ〉 and a final state vector |φ〉 [15], and 
the state of the meter qubit is initially prepared to be γ |0〉 + γ̄ |1〉
(γ and γ̄ are real numbers satisfying γ 2 + γ̄ 2 = 1), with γ̄ � 1.

The interaction Hamiltonian is written as
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Ĥ = h̄g(t) Â ⊗ �̂ , with
∫

g(t)dt = g , (1)

where, �̂ ≡ |1〉〈1| denotes the projection operator onto state |1〉 of 
the meter qubit, Â represents the Hermitian operator correspond-
ing to the observable of the quantum system, and the coupling 
g(t) generally is a time varying function, the resulting coupling 
constant g can be arbitrarily large.

The final state of the meter qubit is calculated as follows

〈φ|e−ig Â⊗|1〉〈1||ψ〉(γ |0〉 + γ̄ |1〉)

= 〈φ|
(

Î 0

0 e−ig Â

)
|ψ〉(γ |0〉 + γ̄ |1〉)

=
(〈φ|ψ〉 0

0 〈φ|e−ig Â |ψ〉
)

(γ |0〉 + γ̄ |1〉)

= 〈φ|ψ〉
[
γ |0〉 + γ̄

〈φ|e−ig Â |ψ〉
〈φ|ψ〉 |1〉

]
, (2)

where, we have used the bases |0〉 = (1
0

)
and |1〉 = (0

1

)
. The com-

plex number 
〈φ|e−ig Â |ψ〉

〈φ|ψ〉 was named the “modular value” of op-

erator Â [14], which is written as ( Â)m. Therefore,

( Â)m ≡ 〈φ|e−ig Â |ψ〉
〈φ|ψ〉 . (3)

The modular value has the same amplification factor 1/〈φ|ψ〉
as the weak value. Nevertheless, in some cases, the modular value 
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can be related to the weak value. Let us give an example of spin 
operators σ̂x, σ̂y and σ̂z with g = −π/2. We have [14]:

(σ̂ )m ≡ 〈φ|ei π
2 σ̂ |ψ〉

〈φ|ψ〉 = i〈σ̂ 〉w (σ̂ = σ̂x, σ̂y or σ̂z) . (4)

Therefore, the modular value of a spin component is directly re-
lated to its weak value in this specific case, i.e., Â = σ̂ and g =
−π/2 [14]. From the point of view of measurement, a modular 
value is easily obtained because one can simply perform the to-
mography using the binary outcomes of the meter qubit. On top of 
it, a modular value can be measured more efficiently than a weak 
value because the measurement coupling constant g can be made 
large.

However, the fundamentals of modular values are not fully un-
derstood yet. For example, a general expression for the relation 
between the modular value and the weak value of an observable 
is still missing. Moreover, the cases that the system’s Hilbert space 
is two-dimensional, i.e. spin-1/2 or qubit systems, have been stud-
ied extensively and there are many implications in quantum me-
chanics and quantum computation [16–19]. Recently, Lorenzo has 
also studied quantum measurements in three-dimensional Hilbert 
space, such as a spin-1 system (or a qutrit) [20]. In the usual 
quantum information processing, a qubit plays the role of unit 
of quantum information, whereas, in quantum cryptography, there 
are reports claim that qutrit systems are more secure than the 
qubit systems [21,22]. It is thus desirable to investigate modular 
values and weak values not only in the two-dimensional systems 
but also in higher dimensional systems.

In this Letter, we obtain more generalized expressions for the 
relationship between the modular values and the weak values by 
using the Lagrange interpolation. For example, in two-dimensional 
cases, we generalize Eq. (4) to the one for an arbitrary coupling 
constant. This expression, of course, reproduces the previous re-
port [14] for specific coupling strengths. We show that, in general, 
not only a single weak value but also a joint weak value of a two-
dimensional system can be expressed by the modular values. For 
three-dimensional systems, we show the modular value of an ob-
servable can be expressed by the weak value of the observable 
and the square of the observable. We then generalize the theory 
to n-dimensional systems, and show the modular value can be ex-
pressed in term of weak values up to (n − 1)th order.

Our general method allows us to deal with both local and non-
local measurements, and explains the anomalous results of some 
intriguing experiments, as are described in Sec. 3. To illustrate, 
we consider the nonlocal joint weak values for two-dimensional 
systems and show that the joint weak values can be obtained by 
measuring proper modular values. Additionally, a simple quantum 
circuit that simulates the measurement of modular value has been 
examined, where a controlled rotation gate plays the role of mod-
ular value interaction Û and the half rotation angle stands for the 
coupling constant g .

The rest of this Letter is organized as follows. General expres-
sions to relate the weak values and the modular values are shown 
in Sec. 2. In Sec. 3 we examine the nonlocal joint weak value 
for two-dimensional Hilbert space with the aid of modular val-
ues. Then, we give some interesting examples such as EPR paradox, 
Hardy’s paradox, and Cheshire Cat experiments. We finally con-
sider a controlled-Rz(θ) gate in Sec. 4, where the meter qubit 
controls the system qubit, to realize the measurement of the mod-
ular value of σ̂z of the system qubit. The Letter concludes with 
remarks in Sec. 5.

2. General expressions to relate weak and modular values

Our first main result is that, when the dimension of the Hilbert 
space n is two, the weak value of an arbitrary observable can be 

calculated from its modular value, and vice versa, for any quantity 
of the coupling constant. When the dimension of Hilbert space is 
larger than two, we show that the modular value can be expressed 
in term of weak values up to (n − 1)th order.

Let us first start from the case of n(≥ 2)dimensional Hilbert 
space. We also assume that an arbitrary observable Â has n dif-
ferent eigenvalues λk (k = 1, 2, ..., n), which are known. Note that 
throughout this letter, we consider the case of non-degeneracy of 
eigenvalues. We now introduce the Lagrange interpolation of the 
matrix form [23]:

e−ig A =
n∑

k=1

e−igλk

n∏

=1,
	=k

A − λ
 I

λk − λ


, (5)

where A is the matrix expression of Â, and I is the unit matrix. 
Taking the eigenvectors of Â as the bases for the matrix expres-
sion, Eq. (5) immediately leads to the interpolation of operator 
form as

e−ig Â =
n∑

k=1

e−igλk

n∏

=1,
	=k

Â − λ
 Î

λk − λ


. (6)

2.1. Two-dimensional Hilbert space

Particularly for n = 2, such as spin-1/2 particles, an arbitrary 
observable Â has two distinguishable eigenvalues λ1 and λ2, and 
then Eq. (6) explicitly becomes

e−ig Â = e−igλ1
Â − λ2 Î

λ1 − λ2
+ e−igλ2

Â − λ1 Î

λ2 − λ1

= λ1e−igλ2 − λ2e−igλ1

λ1 − λ2
Î + e−igλ1 − e−igλ2

λ1 − λ2
Â

= � Î + �′ Â , (7)

where

� = λ1e−igλ2 − λ2e−igλ1

λ1 − λ2

and �′ = e−igλ1 − e−igλ2

λ1 − λ2

are complex numbers.
Applying pre- and post-selected states, |ψ〉 and 〈φ|, from the 

right side and the left side of Eq. (7), respectively, we obtain the 
modular value of Â in relation to its weak value as

( Â)m = � + �′〈 Â〉w . (8)

Inversely solving this, it is straightforward to express the weak 
value of Â by its modular value as

〈 Â〉w = [( Â)m − �]/�′ . (9)

As the first illustration, let us check whether this reproduces 
the relation between the weak value and the modular value of a 
spin- 1

2 operator σ̂ (= σ̂x, σ̂y, or σ̂z) in the case of g = −π/2. The 
spin operator has two eigenvalues: λ1 = 1 for | ↑〉 and λ2 = −1 for 
| ↓〉. Then, the modular value of σ̂ is immediately given by Eq. (8)
as

(σ̂ )m = ei π
2 − e−i π

2

2
〈σ̂ 〉w + ei π

2 + e−i π
2

2
= i〈σ̂ 〉w . (10)

This is exactly the result obtained by [14] shown in Eq. (4) of the 
present Letter.
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