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We derive and study a general rational solution of a coupled defocusing Hirota equation which 
can be used to describe evolution of light in a two-mode fiber with defocusing Kerr effect and 
some certain high-order effects. We find some new excitation patterns in the model, such as M-
shaped soliton, W-shaped soliton, anti-eye-shaped rogue wave and four-petaled flower rogue wave. 
The results are compared with the solutions obtained in other coupled systems like vector nonlinear 
Schrödinger equation, coupled focusing Hirota and Sasa–Satsuma equations. We explain the new 
characters by modulational instability properties. This further indicates that rational solution does 
not necessarily correspond to rogue wave excitation dynamics and the quantitative relation between 
nonlinear excitations and modulational instability should exist.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Rational solutions of nonlinear Schrödinger equation (NLSE) 
have been paid much attention, since rational solution of NLSE can 
be used to describe rogue wave (RW) dynamics in many different 
physical systems [1–7]. Recently, universal properties for RW aris-
ing in nonlinear models were discussed [8–10]. It is demonstrated 
that RWs exist in unstable systems, but not all unstable systems 
allow the existence of RWs. The link between RW and baseband 
modulational instability (MI) was firstly uncovered in [8]. It was 
proved theoretically that RW came from MI under “resonance” 
perturbations for which both dominant frequency and propagation 
constant are equal to the ones of plane wave background [9]. Base-
band MI was suggested to be seen as the origin of RW [10]. Those 
results provide some useful tools to analyze whether RW can exist 
in a nonlinear system. Furthermore, it has been demonstrated that 
quantitative relation between nonlinear excitations and MI can be 
clarified based on dominant perturbation frequency or wave vec-
tor [9].

Among these different nonlinear systems, optical fiber plays an 
important role in experimental observations for its well-developed 
intensity and phase modulation techniques. The experimental 
studies in nonlinear fiber showed that the simplified NLSE can 
well describe the dynamics of localized waves, which only contains 
the group velocity dispersion (GVD) and its counterpart, namely, 
self-phase modulation (SPM). But for ultrashort pulses whose du-
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ration is shorter than 100 fs, which is tempting and desirable to 
improve the capacity of high-bit-rate transmission systems, the 
nonlinear susceptibility will produce higher-order nonlinear ef-
fects like the Kerr dispersion (i.e., self-steepening) and the delayed 
nonlinear response except for SPM, and even the third-order dis-
persion (TOD). These are the most general terms that have to be 
taken into account when extending the applicability of the NLSE 
[11–13]. Many efforts have been made to study rational solution 
of Sasa–Satsuma equation [14–17], and Hirota equation [18,19]. 
Based on the linearized stability analysis of Sasa–Satsuma equa-
tion, rational W-shaped soliton was presented on modulational 
stability (MS) regime [16]. A rational solution was obtained on crit-
ical boundary lines between MI and MS regimes, which described 
an autonomous transition from MI to MS regime [17]. The results 
suggested that not all rational solutions of nonlinear partial equa-
tion corresponded to RW dynamics. This was also demonstrated 
in the Hirota equation [19]. As done in coupled NLSE [20–24], re-
cent studies were extended to coupled Sasa–Satsuma model [25]
and coupled Hirota (CH) equation [26–28]. However, the coupled 
models are just considered as focusing case to derive rational solu-
tion and study on their dynamics. Less attention has been paid on 
the coupled model with defocusing case. Recently, RW of coupled 
defocusing NLSE was discussed [8]. Therefore, we intend to study 
coupled defocusing model with high-order effects.

In this paper, we study on rational solution of a CH with defo-
cusing effects which can be used to describe evolution of light in 
a two-mode defocusing fiber with some certain high-order effects. 
We find there are mainly four types of nonlinear localized waves 
for the CH model, M-shaped soliton, W-shaped soliton, anti-eye-
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shaped rogue wave and four-petaled flower rogue wave. The tran-
sition between them can be realized by varying the background 
frequencies. The superposition of localized waves in the two modes 
is a dark rogue wave or M shaped soliton here, which is different 
from the ones in coupled CH with focusing effects. We explain the 
characters by MI properties, based on that the quantitative relation 
between nonlinear excitations and MI should exist [9]. This further 
indicates that rational solution does not necessarily correspond to 
RW excitation dynamics.

2. Rational solutions for the coupled defocusing Hirota equations

We consider ultrashort pulses propagation in the femtosecond 
regime for a two-mode nonlinear fiber, where the higher-order ef-
fects, such as third-order dispersion, self-steepening, and delayed 
nonlinear response must be taken into account. In this case, the 
characteristics of the vector optical rogue waves can be described 
by the completely integrable CH model [29], which involves the 
higher-order perturbation effects above. In dimensionless form, the 
CH model reads:

iq1,t + α(q1,xx − 2(|q1|2 + |q2|2)q1)

+ iβ
[

q1,xxx − (6|q1|2 + 3|q2|2)q1,x − 3q1q∗
2q2,x

]
= 0,

iq2,t + α(q2,xx − 2(|q1|2 + |q2|2)q2)

+ iβ
[

q2,xxx − (3|q1|2 + 6|q2|2)q2,x − 3q2q∗
1q1,x

]
= 0.

(1)

Here, an arbitrary real parameter β scales the integrable pertur-
bations of the NLS equation. When β = 0, Eq. (1) and (2) reduces 
to the standard coupled NLS equations which have only the terms 
describing lowest order dispersion and self-phase modulation. It 
should be pointed that the nonlinearity coefficients here are defo-
cusing type, for which the rational solution has not been studied 
before, in contrast to the ones of CH with focusing effects [26–28]. 
By exploiting the standard Darboux transformation procedure, we 
obtain the fundamental (first-order) rational solutions of Eqs. (1),

q1 = a1

⎡
⎣1 + 1

(ξ1 + e2)2 + ξ2
2

2i [(ξ1 + e2)X2 + ξ2 X1] − 1

X2
1 + X2

2 + 1
4ξ2

2

⎤
⎦eiθ1 ,

q2 = a2

⎡
⎣1 + 1

(ξ1 − e2)2 + ξ2
2

2i [(ξ1 − e2)X2 + ξ2 X1] − 1

X2
1 + X2

2 + 1
4ξ2

2

⎤
⎦eiθ2

(2)

where

θ1 = (e1 + e2)x −
[
(2a2

1 + 2a2
2 + (e1 + e2)

2)α

+ (6a2
1(e1 + e2) + 6a2

2e1 + (e1 + e2)
3)β

]
t,

θ2 = (e1 − e2)x −
[
(2a2

1 + 2a2
2 + (e1 − e2)

2)α

+ (6a2
2(e1 − e2) + 6a2

1e1 + (e1 − e2)
3)β

]
t,

X1 = −2 [αξ2 + β(3e1ξ2 − 2κ2ξ1 − 2κ1ξ2)] t,

X2 = x +
[

2α(ξ1 − e1) + β(−2(a2
1 + a2

2) − 3e2
1 + 6e1ξ1 − e2

2

+ 4(κ2ξ2 − κ1ξ1))
]
t,

a1, a2 and e2 are real nonzero parameters which determine the 
background amplitudes and relative frequency respectively. They 
satisfy the following condition (5) for the rational solution. e1 is a 
free real parameter which determines the background frequencies 
of the two modes. κ = κ1 + iκ2, ξ = ξ1 + iξ2 (κ1, κ2, ξ1, ξ2 ∈ R) can 

be obtained by solving the following cubic equation with respect 
to the parameter ξ (3) and quantic equation with respect to the 
parameter κ (4),

ξ3 − 2κξ2 + (a2
1 + a2

2 − e2
2)ξ + 2e2

2κ − a2
1e2 + a2

2e2 = 0, (3)

and

64e2
2κ

4 − 32e2(a
2
1 − a2

2)κ
3

−
[

4(−(a2
1 + a2

2)
2 + 20e2

2(a
2
1 + a2

2) + 8e4
2)

]
κ2

+ 36e2(a
2
1 − a2

2)(a
2
1 + a2

2 + 2e2
2)κ − 4(a2

1 + a2
2 − e2

2)
3

− 27e2
2(a

2
1 − a2

2)
2 = 0.

(4)

The discriminant for the quantic equation (4) is

� = −4194304a2
1a2

2e2
2[(a2

1 + a2
2 − 4e2

2)
3 + 27a2

1a2
2(4e2

2)]3.

The existence condition for the rational solution (2) is � < 0 i.e.

0 < e2
2 <

1

4
(a2/3

1 + a2/3
2 )3. (5)

Under the condition (5), we firstly solve the discriminant (4)
to determine κ , and then solve the cubic equation (3) to deter-
mine the double root ξ . In principle, rational solution (2) can be 
determined uniquely. However, it is not possible to solve the above 
quintic equation (4) and cubic equation (3) in direct way. Even 
though we could obtain the analytical solution expressions through 
the Kadan formula, the expressions are so complex that we could 
not do any analysis on the properties of localized waves.

To solve this problem, we use the analysis method provided 
in Ref. [30]. We solve the quintic equation (4) and cubic equation 
(3) about a2

1 and a2
2. It follows that we can obtain two groups of 

solutions. Using one of them, to let the solutions a2
1 and a2

2 are 
valid, we must set Im(a2

1) = Im(a2
2) = 0 and Re(a2

1) > 0, Re(a2
2) > 0. 

Then we introduce the following parameters transformation:

ξ1 = e2r cos(θ), ξ2 = −e2r sin(θ),

κ1 = e2r
(
2 cos2(θ)r2 + r2 − 3

)
cos(θ)

2(r2 − 1)
, κ2 = e2r3 sin3(θ)

1 − r2
,

a1 = ±
√

1 − cos(θ)r

2 − 2r2
e2

(
r2 + 2 cos(θ)r + 1

)
,

a2 = ±
√

cos(θ)r + 1

2 − 2r2
e2

(
r2 − 2 cos(θ)r + 1

)
,

(6)

where 0 < θ < π and 0 < r < 1. Then we can obtain the expres-
sions of X1 and X2 explicitly

X1 = −2 (3βe2r cos(θ) − 3βe1 − α) e2r sin(θ)t,

X2 = x +
[

2 (e2r cos(θ) − e1)α

+
((

6r2 − 18 cos2(θ)r2 − 12 cos2(θ) + 9
)

e2
2

+ 6e1e2r cos(θ) − 3e2
1 − 12

e2
2 sin2(θ)

1 − r2

)
β

]
t.

The rational solution above can be used to investigate the dy-
namics of rational nonlinear localized waves which exist in the 
two-mode fiber with the certain high-order effects. We find that 
there are mainly three types of fundamental nonlinear localized 
waves: W-shaped soliton, M-shaped soliton, and RW. The W-
shaped soliton has been found in a focusing Sasa–Satsuma model 
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