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Along with widely used numerical methods for estimating and computing the Lyapunov dimension there 
is an effective analytical approach, proposed by G.A. Leonov in 1991. The Leonov method is based on 
the direct Lyapunov method with special Lyapunov-like functions. The advantage of the method is that 
it allows one to estimate the Lyapunov dimension of invariant sets without localization of the set in 
the phase space and, in many cases, to get effectively an exact Lyapunov dimension formula. In this 
work the invariance of the Lyapunov dimension with respect to diffeomorphisms and its connection 
with the Leonov method are discussed. For discrete-time dynamical systems an analog of Leonov method 
is suggested. In a simple but rigorous way, here it is presented the connection between the Leonov 
method and the key related works: Kaplan and Yorke (the concept of the Lyapunov dimension, 1979), 
Douady and Oesterlé (upper bounds of the Hausdorff dimension via the Lyapunov dimension of maps, 
1980), Constantin, Eden, Foiaş, and Temam (upper bounds of the Hausdorff dimension via the Lyapunov 
exponents and Lyapunov dimension of dynamical systems, 1985–90), and the numerical calculation of 
the Lyapunov exponents and dimension.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The concept of the Lyapunov dimension was suggested in the 
seminal paper by Kaplan and Yorke [36] for estimating the Haus-
dorff dimension of attractors. The direct numerical computation of 
the Hausdorff dimension of attractors is often a problem of high 
numerical complexity (see, e.g. discussion in [73]), thus, various 
estimates of this dimension are of interest. Later the concept of 
the Lyapunov dimension has been developed in a number of pa-
pers (see, e.g. [14,24,26,28,32,35,45,77] and others).

Along with widely used numerical methods for estimating and 
computing the Lyapunov dimension there is an effective analytical 
approach, proposed by Leonov in 1991 [59] (see also [46,50,54,61,
62]). The Leonov method is based on the direct Lyapunov method 
with special Lyapunov-like functions. The advantage of the Leonov 
method is that it allows one to estimate the Lyapunov dimension 
of invariant sets without localization of the set in the phase space 
and in many cases to get exact Lyapunov dimension formula [46,
47,50,52,53,55,58,63].

Further the invariance of the Lyapunov dimension with respect 
to diffeomorphisms and its connection with the Leonov method 
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are discussed. For discrete-time dynamical systems an analog of 
Leonov method is suggested.

2. Lyapunov dimension of maps and dynamical systems

Consider an autonomous differential equation

u̇ = f (u), f : U ⊆ R
n →R

n, (1)

where f is a continuously differentiable vector-function. Suppose 
that any solution u(t, u0) of (1) such that u(0, u0) = u0 ∈ U exists 
for t ∈ [0, ∞), it is unique and stays in U . Then the evolutionary 
operator ϕt(u0) = u(t, u0) is continuously differentiable and satis-
fies the semigroup property:

ϕt+s(u0) = ϕt(ϕs(u0)), ϕ0(u0) = u0 ∀ t, s ≥ 0, ∀u0 ∈ U . (2)

Thus, {ϕt}t≥0 is a smooth dynamical system in the phase space 

(U , || · ||): 
({ϕt}t≥0, (U ⊆ R

n, || · ||)). Here ||u|| =
√

u2
1 + · · · + u2

n

is Euclidean norm of the vector u = (u1, . . . , un) ∈ R
n . Similarly, 

one can consider a dynamical system generated by the difference 
equation

u(t + 1) = ϕ(u(t)), t = 0,1, .. , (3)

where ϕ : U ⊆ R
n → U is a continuously differentiable vector-

function. Here ϕt(u) = (ϕ ◦ ϕ ◦ · · ·ϕ)(u)︸ ︷︷ ︸
t times

, ϕ0(u) = u, and the ex-

istence and uniqueness (in the forward-time direction) take place 

http://dx.doi.org/10.1016/j.physleta.2016.04.036
0375-9601/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2016.04.036
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:nkuznetsov239@gmail.com
http://dx.doi.org/10.1016/j.physleta.2016.04.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.04.036&domain=pdf


N.V. Kuznetsov / Physics Letters A 380 (2016) 2142–2149 2143

for all t ≥ 0. Further {ϕt}t≥0 denotes a smooth dynamical system
with continuous or discrete time.

Consider the linearizations of systems (1) and (3) along the so-
lution ϕt(u):

ẏ = J (ϕt(u))y, J (u) = D f (u), (4)

y(t + 1) = J (ϕt(u))y(t), J (u) = Dϕ(u), (5)

where J (u) is the n ×n Jacobian matrix, the elements of which are 
continuous functions of u. Suppose that det J (u) 
= 0 ∀u ∈ U .

Consider the fundamental matrix, which consists of linearly in-
dependent solutions {yi(t)}n

i=1 of the linearized system,

Dϕt(u) = (
y1(t), ..., yn(t)

)
, Dϕ0(u) = I, (6)

where I is the unit n × n matrix. An important cocycle property of 
fundamental matrix (6) is as follows

Dϕt+s(u) = Dϕt(ϕs(u)
)

Dϕs(u), ∀t, s ≥ 0, ∀u ∈ U . (7)

Let σi(t, u) = σi(Dϕt(u)), i = 1, 2, .., n, be the singular values 
of Dϕt(u) (i.e. σi(t, u) > 0 and σi(t, u)2 are the eigenvalues of the 
symmetric matrix Dϕt(u)∗Dϕt(u) with respect to their algebraic 
multiplicity), ordered so that σ1(t, u) ≥ · · · ≥ σn(t, u) > 0 for any 
u ∈ U , t ≥ 0. The singular value function of order d ∈ [0, n] at the 
point u ∈ U for Dϕt(u) is defined as

ωd(Dϕt(u))

=
⎧⎨
⎩

1, d = 0,

σ1(t, u)σ2(t, u) · · ·σd(t, u), d ∈ {1,2, ..,n},
σ1(t, u) · · ·σ�d�(t, u)σ�d�+1(u)d−�d�, d ∈ (0,n),

(8)

where �d� is the largest integer less or equal to d. Remark that 
| det Dϕt(u)| = ωn(Dϕt(u)). Similarly, we can introduce the singu-
lar value function for arbitrary quadratic matrices. By the Horn in-
equality [31] for any two n ×n matrices A and B and any d ∈ [0, n]
we have (see, e.g. [10, p. 28])

ωd(AC) ≤ ωd(A)ωd(C), d ∈ [0,n]. (9)

Let a nonempty set K ⊂ U ⊆ R
n be invariant with respect to 

the dynamical system {ϕt}t≥0, i.e. ϕt(K ) = K for all t > 0. Since in 
the numerical experiments only finite time t can be considered, for 
a fixed t ≥ 0 let us consider the map defined by the evolutionary 
operator ϕt(u): ϕt : U ⊆R

n → U .
The concept of the Lyapunov dimension was suggested in the 

seminal paper by Kaplan and Yorke [36] and later it was developed 
in a number of papers (see, e.g. [14,23,26,32,45]). The following 
definition is inspirited by Douady and Oesterlé [20].

Definition 1. The local Lyapunov dimension1 of the map ϕt (or 
finite-time local Lyapunov dimension of the dynamical system 
{ϕt}t≥0) at the point u ∈ U is defined as

dimL(ϕ
t, u) = inf{d ∈ [0,n] : ωd(Dϕt(u)) < 1}. (10)

If the infimum is taken over an empty set (i.e. ωn(Dϕt(u)) ≥ 1), 
we assume that the infimum and considered dimension are taken 
equal2 to n.

1 This is not a dimension in a rigorous sense (see, e.g. [4,33,40]). The notion ‘local 
Lyapunov dimension’ is used, e.g. in [22,32].

2 In general, since ω0(Dϕt (u)) ≡ 1 and d �→ ωd(Dϕt (u)) is a left-continuous func-
tion, we have dimL(ϕ

t , u) = max{d ∈ [0, n] : ωd(Dϕt (u)) ≥ 1}. If all {σi(t, u)}n
1 are 

assumed to be positive and ωn(Dϕt (u)) < 1, then in (10) the infimum is achieved 
(see (20) and the Kaplan–Yorke formula (22)).

The Lyapunov dimension of the map ϕt (or finite-time Lya-
punov dimension of the dynamical system {ϕt}t≥0) with respect 
to the invariant set K is defined as

dimL(ϕ
t, K ) = sup

u∈K
dimL(ϕ

t, u)

= sup
u∈K

inf{d ∈ [0,n] : ωd(Dϕt(u)) < 1}. (11)

The continuity of the functions u �→ σi(Dϕt(u)), i = 1, 2, .., n, 
on U implies that for any d ∈ [0, n] and t ≥ 0 the function u �→
ωd(Dϕt(u)) is continuous on U (see, e.g. [20], [27, p. 554]). There-
fore for a compact set K ⊂ U and t ≥ 0 we have

sup
u∈K

ωd(Dϕt(u)) = max
u∈K

ωd(Dϕt(u)). (12)

By relation (12) for a compact invariant set K one can prove that

dimL(ϕ
t, K ) = inf{d ∈ [0,n] : max

u∈K
ωd(Dϕt(u)) < 1}. (13)

In the seminal paper [20] Douady and Oesterlé proved rigor-
ously that the Lyapunov dimension of the map ϕt with respect to 
the compact invariant set K is an upper estimate of the Hausdorff 
dimension of the set K :

dimH K ≤ dimL(ϕ
t, K ). (14)

For numerical estimations of dimension, the following remark is 
important. From (7) and (9) it follows that

sup
u∈K

ωd(Dϕt+s(u)) = sup
u∈K

ωd
(

Dϕt(ϕs(u))Dϕs(u)
)

≤ sup
u∈K

ωd(Dϕt(u)) sup
u∈K

ωd(Dϕs(u)) ∀t, s ≥ 0

and sup
u∈K

ωd(Dϕnt(u)) ≤ (sup
u∈K

ωd(Dϕt(u)))n for any integer n ≥ 0. 

Thus for any t ≥ 0 there exists s(t) > 0 such that

dimL(ϕ
t+s(t), K ) ≤ dimL(ϕ

t, K ). (15)

Remark that if supu∈K ωd(Dϕt(u)) < 1 for a certain d ∈ [0, n], then

inf
t>0

sup
u∈K

ωd(Dϕt(u)) = lim inf
t→+∞ sup

u∈K
ωd(Dϕt(u)) = 0. (16)

While in the computations we can consider only finite time t
and the map ϕt , from a theoretical point of view, it is interesting to 
study the limit behavior of finite-time Lyapunov dimension of the 
dynamical system {ϕt}t≥0 with respect to the compact invariant 
set K .

Definition 2. The Lyapunov dimension of the dynamical system 
{ϕt}t≥0 with respect to the invariant set K is defined as

dimL({ϕt}t≥0, K ) = inf
t>0

dimL(ϕ
t, K ). (17)

From (14) and (13) we have

dimH K ≤ dimL({ϕt}t≥0, K ) = inf
t>0

sup
u∈K

dimL(ϕ
t, u) (18)

and (15) implies

inf
t>0

dimL(ϕ
t, K ) = lim inf

t→+∞ dimL(ϕ
t, K ). (19)

Definition 3. (See, e.g. [1].) The finite-time Lyapunov exponents (or 
the Lyapunov exponent functions of singular values) of the dynam-
ical system {ϕt}t≥0 at the point u ∈ U are denoted by LEi(t, u) =
LEi(Dϕt(u)), i = 1, 2, .., n, and defined as

LEi(t, u) = 1

t
lnσi(t, u), t > 0.
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