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Recently it has been found numerically that the spectra of metamaterial crystals may contain pairs of 
bands which disappear inside the Brillouin zone. We observe that the wave equations for such systems 
are essentially non-Hermitian, but PT -symmetric. We show that the real-frequency spectra correspond 
to PT -symmetric solutions of the wave equation. At those momenta in the Brillouin zone where 
apparently no solutions exist, there appear pairs of complex-frequency solutions with spontaneously 
broken PT symmetry.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the basic characteristics of waves propagating in ma-
terial media is their frequency spectrum. In periodic systems, for 
instance in photonic crystals, the frequency ω is a function of 
the wave vector �q, ω = ωs(�q), where �q is restricted to an ele-
mentary tile of the reciprocal space, the so-called first Brillouin 
zone. The discrete index s numerates distinct branches of the dis-
persion, which correspond to different distributions of the wave 
field within the unit cell of the periodic system. Since in macro-
scopic systems the wave vector �q changes quasi-continuously, each 
branch s leads in general to a finite interval of allowed frequen-
cies, the so-called bands, which may be divided by band gaps 
in-between them [1].

In most systems studied so far, either in the solid-state or pho-
tonic context, for each of the branches the function ω = ωs(�q)

stretches throughout the whole Brillouin zone. This is a simple 
consequence of Hermiticity. In fact, the plane wave ei�q·�x may ex-
perience Bragg scattering to any of the plane waves of the form 
ei(�q+�K )·�x , where �K is a reciprocal lattice vector. In the basis of 
such states, the Schrödinger or wave equation takes the form of 
an eigenvalue problem H �K �K ′ (�q)c �K ′ = λ(�q)c �K . For a fixed cut-off we 
are then dealing with an N × N matrix which, if it is Hermitian, is 
guaranteed to have N real eigenvalues, independently of the value 
of �q. Smooth changes of H �K �K ′ (�q) lead then to smooth changes of 
λ(�q), resulting in bands which cannot disappear inside the Bril-
louin zone. In other words, the number of eigenfrequencies cannot 
be reduced in a certain interval of wave vectors.
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However, in numerical simulations it has recently been found 
that in certain systems the bands may disappear inside the Bril-
louin zone, forming the so-called folded bands [2]. In particular, 
such behavior has been observed in photonic crystals in the form 
of a square array of metamaterial cylinders immersed in vacuum. 
As an example, in Fig. 1 we show the two lowest-frequency bands 
for such a metamaterial photonic crystal calculated numerically 
from transmission spectra [3]. Folded bands appear when the ra-
dius of cylinders R increases above the critical value Rc ≈ 0.275a, 
where a is the spatial period of the crystal. This surprising re-
sult indicates that the wave equation for electromagnetic field in a 
metamaterial photonic crystal has to be non-Hermitian.1

Actually, it is well known that if both, permittivity ε and per-
meability μ, are non-constant functions of the spatial coordinate, 
then the wave equation for the magnetic field �H reads

M �H ≡ μ−1 rot
[
ε−1 rot �H

]
= ω2 �H, (1)

where the operator M is non-Hermitian even in ordinary photonic 
crystals made from dissipationless components [6,1]. Note that we 
set the speed of light c = 1.

So how can it be that folded bands have not been observed in 
ordinary photonic crystals? The reason is that the non-Hermitian 
character of (1) is often not essential, since it can be avoided by a 
reformulation of the problem. For instance, if the permeability μ

1 Folded bands have been observed also earlier, see, e.g., [4] and [5]. However, in 
those papers systems with frequency-dependent material parameters were studied. 
Therefore, from the mathematical point of view, those authors did not study eigen-
value problems, and the presence of folded bands in spectra did not lead to the sort 
of questions which we address in this paper.
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Fig. 1. Dispersion relation ω = ω(�q) in the �X direction for a two-dimensional 
photonic crystal made of metamaterial cylinders with real and dispersionless per-
mittivity ε = −1.8 and permeability μ = −5, see inset. Electric field is taken to be 
parallel to the cylinders. The two sets of curves correspond to cylinder radii slightly 
above and below the critical radius Rc ≈ 0.275a [3].

is real and positive definite, one can redefine the magnetic field by 
�H = �h/

√
μ, thereby transforming (1) to the form

O�h ≡ μ−1/2 rot
[
ε−1 rot

(
μ−1/2�h

)]
= ω2�h (2)

with an explicitly Hermitian operator O [1].
The observation of folded bands in metamaterial photonic crys-

tals therefore suggests that their non-Hermitian character should 
be essential, i.e. not avoidable by any reformulation. In particu-
lar, it will be shown later that, in presence of interfaces between 
ordinary dielectric regions where √μ is purely real and metama-
terial regions with purely imaginary √μ, the operator O remains 
non-Hermitian. We would like to point out that, since we are deal-
ing with a metamaterial crystal, the alternative Hermitization of 
the wave equation for �E in terms of the substitution �E = �e/√ε is 
plagued by the same problem.

The goal of the present paper is to demonstrate that the appear-
ance of folded bands in metamaterial photonic crystals is a direct 
consequence of their essential non-Hermiticity. To this end, we will 
start by studying the simplest possible crystal structure, namely a 
one-dimensional (1D) periodic stack of right- and left-handed ma-
terials. Several anomalous features of electromagnetic wave propa-
gation have already been observed in this model [7–10]. Here we 
observe that the 1D model exhibits the so-called PT symmetry 
(for a review, see [11]) and, making use of this recently devel-
oped concept, we will explain the presence of folded bands in the 
spectrum of this model. Similar reasoning will be later applied to 
two-dimensional (2D) metamaterial crystals studied in [2,3].

2. One-dimensional toy model

We assume that the 1D stack consists of materials a and b
characterized by εi , μi , refractive indices ni = √

εiμi , impedances 
Zi = √

μi/εi , and thicknesses �i , where i = a, b. All material pa-
rameters are assumed to be real and frequency-independent. The 
frequency spectrum of transverse electromagnetic waves, which 
propagate perpendicularly to the slabs with wave vector q, can be 
determined from the implicit equation [12]

f (ω) ≡ 1

2
(A + 1) cosωτ+ − 1

2
(A − 1) cosωτ− = cos q�, (3)

where � = �a + �b is the length of the unit cell, τ± = τa ± τb with 
τi = ni�i , and A = (Za/Zb + Zb/Za)/2 > 1 is the impedance mis-
match between the slabs a and b.

Fig. 2. 1D model with εa = 1, μa = 1, �a = 1, and εb = −9, μb = −1, �b = 0.41. 
(a) Function f (ω). (b) Frequency spectrum. (c) Real and imaginary parts of fre-
quency in the lowest folded band.

In ordinary photonic crystals with εi > 0 and μi > 0 we have 
τ+ > |τ−| ≥ 0. Therefore the larger-amplitude first term of f (ω)

oscillates faster than the smaller-amplitude second term. Let us 
denote the positions of local extrema of the function f (ω) as 
ω∗ . In order to proceed, let us note that for frequencies ωn =
nπ/τ+ , where n is an integer, we have | f (ωn)| ≥ 1. Moreover, 
f (ωn) exhibits even–odd oscillations with n. But since the second 
term in f (ω) oscillates with a longer period, in-between ωn and 
ωn+1 there will be at most one extreme of f (ω), and therefore 
| f (ω∗)| ≥ | f (ωn)| ≥ 1. From | f (ω∗)| ≥ 1 it follows that no folded 
bands can be present in the spectrum. This was of course to be 
expected, since the wave equation of an ordinary photonic crystal 
can be Hermitized.

Now let us assume that the slab a is an ordinary dielectric with 
εa > 0 and μa > 0, whereas the slab b is made from a metamate-
rial with εb < 0, μb < 0, and nb < 0. In this case τ− > |τ+| ≥ 0 and 
it is the smaller-amplitude second term of f (ω) which oscillates 
faster than the larger-amplitude first term. As shown explicitly in 
Fig. 2(a), then the values of f (ω∗) may lie within the interval 
(−1, 1), and as a result folded bands can form in the spectrum. 
Such folded bands have been observed previously for oblique wave 
propagation [10]. Similarly as in the case of 2D metamaterial pho-
tonic crystals [3], also in the 1D case folded bands form only in a 
subset of the parameter space (A, β = τ−/τ+) of (3). It is worth 
pointing out that also the much debated zero-n̄ gaps [8] are as-
sociated with a special case of folded bands. In fact, the zero-n̄
condition is equivalent to τ+ = 0 and in this case (3) has solutions 
only for q = 0 and ωτ− = 2mπ , where m is an integer.

Since (3) does not shed light on the mathematical structure of 
the 1D problem, in what follows we shall restate its basic equa-
tions. Let us first observe that the wave equation (1) for the 1D 
problem reads piecewise

−n−2
i H ′′ = ω2 H (4)

with different refractive indices ni in materials a and b. If we take 
the center of the slab a as the origin, then the boundary conditions 
at the interfaces ξ = ±�a/2 between the slabs require

H(ξ−) = H(ξ+), E(ξ−) = E(ξ+), (5)

where ξ− and ξ+ are infinitesimally shifted from ξ to the left and 
right, respectively, and E(ξ±) = H ′(ξ±)/ε(ξ±). Moreover, from the 
Bloch theorem follows an additional boundary condition

H(�/2) = eiq�H(−�/2). (6)

To summarize, the boundary-value problem which we have to 
solve is defined by (4), (5), (6).

Let us prove now that the standard Hermitization procedure by 
means of a redefinition of fields h(x) = H(x)

√
μ(x) does not work 

for the 1D metamaterial photonic crystal. In other words, let us 
show that the operator O for the boundary-value problem (4), (5), 
(6) is not Hermitian. To this end, let us calculate



Download English Version:

https://daneshyari.com/en/article/1859475

Download Persian Version:

https://daneshyari.com/article/1859475

Daneshyari.com

https://daneshyari.com/en/article/1859475
https://daneshyari.com/article/1859475
https://daneshyari.com

