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The dynamics of a point vortex moving along a straight boundary with a circular cavity subjected to a 
background flow is investigated. Given the constant background flow, this configuration produces regular 
phase portraits of the vortex motion. These phase portraits are discriminated depending on the cavity’s 
circular shape, and then the transition to chaos of the vortex motion is investigated given an oscillating 
perturbation superimposed on the background flow. Based on the steady-state vortex rotation, the forcing 
parameters that lead to effective destabilization of vortex trajectories are distinguished. We show that, 
provided the cavity aperture is relatively narrow, the periodic forcing superimposed on the background 
flow destabilizes the vortex trajectories very slightly. On the other hand, if the cavity aperture is relatively 
wide, the forcing can significantly destabilize vortex trajectories causing the majority of the trajectories, 
which would be closed without the forcing, to move towards infinity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The motion of point vortices in domains of curved geometry is 
of interest partially because of possible applications. In the ocean 
one can rarely observe a straight boundary. Most of the boundaries 
are curved, which thus significantly alters the vortex dynamics in 
their immediate vicinity, sometimes forcing eddies to stay inside 
bays [1–3]. For instance, very intense mesoscale dynamics is often 
observed in the Bay of Biscay. Making use of satellite images, the 
authors of [4] reconstructed trajectories of isolated vortices moving 
along the continental slope. Some of these vortices remain coher-
ent for very long, at least, until they left the bay. The authors of 
[2] modeled numerically the interaction of surface and deep vor-
tices in the same area, and established the features of the vortex 
interaction depending on the distance to the slope. Experimen-
tal measurements [5] indicated the presence of coherent vortex 
structures near the Gulf of Lions, which are entrapped inside the 
gulf. Numerical simulation of the circulation and radar observation 
in the Gulf of Lions [1] also revealed persistent mesoscale vortex 
structures that move along the curved coastline and are able to 
pass over the gulf without disintegrating. These examples illus-
trate that coherent vortex structures can persist for a long time, 
only slightly changing shape, near curved boundaries. This obser-
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vation is important because it allows us to expect that using the 
simplest vortex model, the point vortex model in a potential fluid, 
may provide valuable qualitative insight about feasible vortex mo-
tion near curved coastlines.

Moreover, the dynamics of point vortices in domains with 
curved boundaries is interesting in itself. The boundaries change 
the point-vortex trajectory topology, which may result in the ap-
pearance of periodic motion [6–11]. A point vortex moves in a 
rectilinear, uniform fashion along a straight wall because this con-
figuration is equivalent to the motion of a vortex pair consisting of 
equal co- and counter rotating point vortices [12]. To change the 
geometry of the boundary, one then needs to map conformally the 
straight boundary into the desired geometry. However, to ensure 
that the point vortex in the new geometry preserves its strength, 
one should make use the Kirchhoff–Routh stream-function [13,14].

This configuration is chosen to mimic the simplest shape of a 
generic bay. Using this idealized model, it is possible to gain in-
sights into the ways an oceanic bay can entrap vortex structures.

2. Problem formulation

We consider the following conformal mapping, that maps a 
straight line with a circular cavity of radius R into the upper half-
plane,

ζ = b
1

1 − γ z2
, z2 = z

1
2−α

1 , z1 = z − a

z + a
, (1)
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Fig. 1. Separatrices of the steady-state vortex motion, which forms typical phase portraits as U0 = −1, ε = 0, μ = 1: (a) α = 0.5, (b) α = 0.09, (c) α = 0.05.

where a = R sin (πα), b = 2a/ (2 − α), πα is the characteristic an-
gle of the cavity (see Fig. 1a), z = x + iy is the complex variable 
in the original domain with the cavity, and ζ = ξ + iη is the com-
plex variable in the mapped upper-plane domain. Here γ = 1 if 
y ≥ 0 and γ = exp {2iπ/(2 − α)} if y < 0 defining the correspond-
ing branch of the mapping.

A point vortex with a strength μ then moves in the z-plane 
according to the Kirchhoff–Routh stream-function [13,14], which 
yields the following complex velocity field for the vortex motion,

dz∗
v

dt
= dζ

dz

∣∣∣∣
z=zv

(
U + μ

2ηv (zv)

)
− iμ

d2ζ

dz2

∣∣∣
z=zv

2 dζ
dz

∣∣∣
z=zv

, (2)

where the subscript v marks the coordinates of the vortex, and ·∗
is the complex conjugate. The term U + μ

2ηv
corresponds to the in-

fluence of the mirror vortex [12] and a plane flow with velocity U , 

while the term iμ

d2ζ

dz2

∣∣∣∣
z=zv

2 dζ
dz

∣∣∣
z=zv

appears because the vortex strength in 

the domain z should be equal to the vortex strength in the do-
main ζ . Then, by solving the governing equations

dxv

dt
= Re

dz∗
v

dt
,

dyv

dt
= − Im

dz∗
v

dt
, (3)

one obtains the vortex trajectories.
The complex velocity of a fluid particle in the z-plane is

dz∗

dt
= dζ

dz

(
U + iμ

(
1

ζ − ζv
− 1

ζ − ζ ∗
v

))
. (4)

The fluid particle trajectories can then be calculated using the fol-
lowing equations, analogous to (3),

dx

dt
= Re

dz∗

dt
,

dy

dt
= − Im

dz∗

dt
. (5)

3. The steady-state dynamics of the point vortex

Near a straight wall, a vortex induces a bubble that does not 
mix with outer fluid, and carries it towards infinity owing to the 
self-induced rectilinear translation of the vortex. If one superim-
poses a plane background flow directed along the wall, the vortex 
will just move faster or slower depending on the background flow 
direction. Nevertheless, its motion will still be rectilinear and uni-
form. Change in the dynamics occurs if the background flow is 
sheared [15]. Then, the vortex starts oscillating periodically along 
its path, which leads to stirring of the fluid in its immediate vicin-
ity. Nevertheless, in both cases the vortex translates monotonically 
to infinity if its average self-propulsion velocity is not equal to the 
average background flow velocity.

Now, by setting a curved wall, one forces the vortex to change 
its path [11]. Depending on the curvature, there can appear a new 
type of dynamics, such that the vortex can start circulating period-
ically in certain localized regions. In other words, the vortex can be 
entrapped inside the cavity or can pass it continuing moving with 
the flow. The first regime is especially interesting since periodic 
oscillations of the vortex can be perturbed giving rise to chaotic 
dynamics. In this case, the perturbation is superimposed as a peri-
odically changing external flow. Let the background flow be of the 
form

U = U0 (1 + ε sinνt) , (6)

where U0 is the mean flow, ε, ν are the forcing magnitude and 
frequency.

Because the system has many parameters, we restrict ourselves 
to examine the dynamics depending on the cavity’s characteris-
tic angle α, whereas the strength μ = 1 and the background flow 
U0 = −1 throughout the paper.

To start, let us look into the steady-state system as ε = 0. 
Hence, the background flow is assumed to be constant U = U0. 
There can be discriminated three types of the phase space struc-
ture that differ by the number of critical points. The first one 
comprises three critical points, one is elliptic and the other two 
are hyperbolic (see Fig. 1a). The second one has two elliptic and 
three hyperbolic critical points (see Fig. 1b). The third one also 
features the same set of critical points with two elliptic and three 
hyperbolic ones, but the structure of the phase portrait is differ-
ent. The discrepancy is that there appear two distinctively separate 
closed recirculation zones shown in Fig. 1c instead of one closed 
region with an inner separatrix nested inside an outer separatrix 
(see Fig. 1b).

It is feasible to demonstrate that the classification of the phase 
space portrait relying on the number of the critical points is com-
plete. To determine the position of the critical points, one needs 
to equate eq. (2) to zero and then to solve the resulting equa-
tion. However, for convenience, we take advantage of the inverse 
mapping zv = f (ζv), which yields the governing equation in the 
ζ -plane,

dζv∗
dt

= 1

| f ′ (ζv)|2
[

U + μi
1

ζv − ζv∗ + 1

2
μi

f ′′ (ζv)

f ′ (ζv)

]
, (7)

where the inverse mapping implicitly reads

zv = f (ζv)

= −a

[(
1 − b

ζv

)2−α

+ 1

]
/

[(
1 − b

ζv

)2−α

− 1

]
. (8)

Thus,

U

μ
+ 1

2ηv
− 1

2
i

f ′′ (ζv)

f ′ (ζv)
= 0. (9)
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