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We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the 
hypergeometric differential equation. We demonstrate that this differential equation can be transformed 
into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-
vis the Nobre–Rego-Monteiro–Tsallis one.
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1. Introduction

In 2011, Nobre, Rego-Monteiro and Tsallis (NRT) [1–5] intro-
duced an intriguing new version of the nonlinear Schrödinger 
equation (NLSE), an interesting proposal that one may regard as 
part of a project to explore non-linear versions of some of the 
fundamental equations of physics, a research venue actively vis-
ited in recent times [6,7]. Earlier non-linear versions of the SE 
have found application in diverse areas (fiber optics and water 
waves, for instance) [7]. A most studied NLSE involves a cubic 
nonlinearity in the wave function. In quantum settings the NLSE 
usually rules the behavior of a single-particle’s wave function that, 
in turn, provides an effective, mean-field description of a quan-
tum many-body system. An important case is the Gross–Pitaevskii 
equation, employed in researching Bose–Einstein condensates [8]. 
The cubic nonlinear term appearing in the Gross–Pitaevskii equa-
tion describes short-range interactions between the condensate’s 
constituents. The NLSE for the system’s (effective) single-particle 
wave function is found assuming a Hartree–Fock-like form for the 
global many-body wave function, with a Dirac’s delta form for the 
inter-particle potential.

The NRT equation derives from the thermo-statistical formal-
ism based upon the Tsallis Sq non-additive, power-law information 
measure. Applications of the functional Sq involve diverse physical 
systems and processes, having attracted much attention in the last 
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20 years (see, for example, [9–17], and references therein). In par-
ticular, the Sq entropy has proved to be useful for the analysis of 
diverse problems in quantum physics [18–26].

In this paper we traverse a totally different road. We start 
from the differential equation that governs hypergeometric func-
tions and derive from it a new NLSE that is different from, but 
exhibits some similarities with, the NRT.

2. A new non-linear Schrödinger equation

The q-exponential eq is defined as eq(x) = [1 + (q −1)x]
1

1−q
+ , that 

is,

eq(x) = [1 + (q − 1)x]
1

1−q
+

= [1 + (q − 1)x] 1
1−q if 1 + (q − 1)x > 0

eq(x) = 0, otherwise (with q ∈ R). (2.1)

A search in [27] reveals that

F (−α,γ ;γ ;−z) = (1 + z)α, (2.2)

which yields for eq[(i/h̄)(px − Et)] ≡ eq(Y ) the relation (with 
E = p2

2m )

[
1 + i

h̄
(1 − q)(px − Et)

] 1
1−q

= F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]
, (2.3)
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which is a fundamental result for us. We consider below deriva-
tives F ′ and F ′′ of F with respect to Y .

Now, according to [28], the hypergeometric function obeys the 
following, differential equation (primes denote derivatives with re-
spect to Y )

z(1 − z)F ′′(α,β;γ ; z) +
+ [γ − (α + β + 1)z]F ′(α,β;γ ; z) − αβ F (α,β;γ ; z) = 0,

(2.4)

so that, specializing things for our instance (2.3) we encounter

i

h̄
(q − 1)(px − Et)

[
1 − i

h̄
(q − 1)(px − Et)

]

× F ′′
[

1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]

+
[
γ −

(
1

q − 1
+ γ + 1

)
i

h̄
(q − 1)(px − Et)

]

× F ′
[

1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]

− γ

q − 1
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]
= 0. (2.5)

This allows for a relation between the derivative with respect to 
the argument and the partial derivative with respect to time, for 
this hypergeometric function

F ′
[

1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]

= ih̄

(q − 1)E

∂

∂t
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]
. (2.6)

In analogous fashion we obtain, for the second partial derivative 
with respect to the position

F ′′
[

1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]

= − h̄2

(q − 1)2 p2

∂2

∂x2
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]
. (2.7)

Replacing (2.6) and (2.7) into (2.5), this last equation adopts the 
appearance

− i

h̄
(q − 1)(px − Et)

[
1 − i

h̄
(q − 1)(px − Et)

]

× h̄2

(q − 1)2 p2

∂2

∂x2
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]

+
[
γ −

(
1

q − 1
+ γ + 1

)
i

h̄
(q − 1)(px − Et)

]

× ih̄

(q − 1)E

∂

∂t
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]

− γ

q − 1
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]
= 0, (2.8)

that can be recast in the fashion

− i

h̄
(q − 1)(px − Et)

[
1 − i

h̄
(q − 1)(px − Et)

]

× h̄2

(q − 1)m2

∂2

∂x2
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]

+
[
γ −

(
1

q − 1
+ γ + 1

)
i

h̄
(q − 1)(px − Et)

]

× ih̄
∂

∂t
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]

− γ E F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]
= 0. (2.9)

Deriving (2.3) with respect to time we obtain:

−γ E F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]

= −ih̄γ

{
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]}(1−q)

× ∂

∂t
F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]
. (2.10)

For simplicity, let us abbreviate

F ≡ F

[
1

q − 1
, γ ;γ ; i

h̄
(q − 1)(px − Et)

]
. (2.11)

Using now (2.10), Eq. (2.9) becomes

− h̄2

2m(q − 1)

[
1 − F (1−q)

]
F (1−q) ∂2

∂x2
F

+ ih̄

{
γ +

(
1

q − 1
+ γ + 1

)[
F (1−q) − 1

]} ∂

∂t
F

− ih̄γ F (1−q) ∂

∂t
F = 0. (2.12)

Simplifying things in this last relation we arrive at

− h̄2

2m
F (1−q) ∂2

∂x2
F − ih̄q

∂

∂t
F = 0, (2.13)

that can be rewritten as

ih̄q
∂

∂t
F = F (1−q)H0 F , (2.14)

where H0 is the free particle Hamiltonian, note that, for q = 1, one 
reobtains Schrödinger’s free particle equation. Now, if instead of 
(2.3) we deal just with

F (x, t) = A

[
1 + i

h̄
(1 − q)(px − Et)

] 1
1−q

, (2.15)

then F (0, 0) = A and (2.14) becomes

ih̄q
∂

∂t

[
F (x, t)

F (0,0)

]
=

[
F (x, t)

F (0,0)

](1−q)

H0

[
F (x, t)

F (0,0)

]
, (2.16)

or, equivalently,

ih̄q

[
F (x, t)

F (0,0)

](q−1)
∂

∂t

[
F (x, t)

F (0,0)

]
= H0

[
F (x, t)

F (0,0)

]
, (2.17)

that, in turn can be recast as

ih̄
∂

∂t

[
F (x, t)

F (0,0)

]q

= H0

[
F (x, t)

F (0,0)

]
. (2.18)

At this stage we realize that this last equation could be ‘general-
ized’ to any Hamiltonian H as

ih̄
∂

∂t

[
ψ(x, t)

ψ(0,0)

]q

= H

[
ψ(x, t)

ψ(0,0)

]
. (2.19)

With the change of variables [ψ(x, t)]q = φ(x, t), Eq. (2.19) takes 
the form

ih̄
∂

∂t

[
φ(x, t)

φ(0,0)

]
= H

[
φ(x, t)

φ(0,0)

] 1
q

, (2.20)

which trivially reduces to the ordinary Schrödinger equation for 
q = 1.
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