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1. Introduction

In 2011, Nobre, Rego-Monteiro and Tsallis (NRT) [1-5] intro-
duced an intriguing new version of the nonlinear Schrédinger
equation (NLSE), an interesting proposal that one may regard as
part of a project to explore non-linear versions of some of the
fundamental equations of physics, a research venue actively vis-
ited in recent times [6,7]. Earlier non-linear versions of the SE
have found application in diverse areas (fiber optics and water
waves, for instance) [7]. A most studied NLSE involves a cubic
nonlinearity in the wave function. In quantum settings the NLSE
usually rules the behavior of a single-particle’s wave function that,
in turn, provides an effective, mean-field description of a quan-
tum many-body system. An important case is the Gross-Pitaevskii
equation, employed in researching Bose-Einstein condensates [8].
The cubic nonlinear term appearing in the Gross-Pitaevskii equa-
tion describes short-range interactions between the condensate’s
constituents. The NLSE for the system’s (effective) single-particle
wave function is found assuming a Hartree-Fock-like form for the
global many-body wave function, with a Dirac’s delta form for the
inter-particle potential.

The NRT equation derives from the thermo-statistical formal-
ism based upon the Tsallis S non-additive, power-law information
measure. Applications of the functional Sy involve diverse physical
systems and processes, having attracted much attention in the last
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20 years (see, for example, [9-17], and references therein). In par-
ticular, the Sy entropy has proved to be useful for the analysis of
diverse problems in quantum physics [18-26].

In this paper we traverse a totally different road. We start
from the differential equation that governs hypergeometric func-
tions and derive from it a new NLSE that is different from, but
exhibits some similarities with, the NRT.

2. A new non-linear Schrodinger equation

1
The g-exponential eq is defined as eq(x) =[1+(q— 1)x]]r"’, that
is,

1
eg(x)=[1+(q—Dx]}*

1

=[1+(@—1Dx]7™ if 1+@—1x>0
eq(x) =0, (with g € R). (2.1)

A search in [27] reveals that

otherwise

F(—a,y;y;—2)=(1+2¢%, (2.2)

which yields for eq4[(i/h)(px — Et)] = eq(Y) the relation (with
E=1)
m

1

i =g
[1 + 2 (1= 0 (px— Et)]
i

ﬁ(61—1)(117)<—Et)], (2.3)
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which is a fundamental result for us. We consider below deriva-
tives F’ and F” of F with respect to Y.

Now, according to [28], the hypergeometric function obeys the
following, differential equation (primes denote derivatives with re-
spect to Y)

21— 2)F" (o, Bs 5 2) +
+y —(@+B+DzlF (@, B;v:2) —apF(a, B;y;2) =0,
(2.4)

so that, specializing things for our instance (2.3) we encounter
i i
E(q—l)(pX—Et) [1—E(q—1)(pX—Et)]
o ] ~i( —1)(px — Et)
q—]’y’y’ h q p
1 i
- — 1)-(@q—1 — Et
+[V (q_1+y+ >ﬁ(q )(px )]
x F’ ! ; 'i( 1)(px — Et)
q 1sV’)’v h q p
Y

1 .
—ﬁF[qj7V;V;%(q—l)(PX—Ef)]=0~ (2.5)

This allows for a relation between the derivative with respect to
the argument and the partial derivative with respect to time, for
this hypergeometric function

1 i
F'l——.y:y; -(@—D(px— Et
[q_l,y,y,h(q )(px )]
ih 0
= —F
(q—1E at

1 i
[q_l,%y,ﬁ(q—l)(pX—Et)]- (2.6)

In analogous fashion we obtain, for the second partial derivative
with respect to the position

F” ! 2V i( 1)(px — Et)
q—1 ViV h q p
h? 92
=— —F
(@ —1)?p? 9x?
Replacing (2.6) and (2.7) into (2.5), this last equation adopts the
appearance

1 i
[q — Vi@ Dipx— Et)] - (2.7)

i i
—E(q —1)(px — Et) [1 - E(q = D(px — Et)]

h? 92
« 9
(q —1)2p? ox?

1 i
+ |:V - (qj‘i‘y-i‘l) E(Q—U(PX—EU]

1 i
F[q_l,%%ﬁ(q—l)(px—Et)]

X i EF[l V'V'i(q—l)(px—Et)]
G@—DEat |q—1""n

- F[—l y'y'i(q—l)(px—Et)]:O (2.8)
L= ,

that can be recast in the fashion

i i
—E(q — 1 (px — Et) [1 - E(q - D(px — Et)]

92
VL
(q — 1)m?2 9x2

1 i
+ [V - (qj+y+l> E(q—l)(px—b‘t)}

1 i
F [qu ViV ﬁ(q - D(px— Ef)}

cintr | iy Lg—ex—E0
ot Lg—1 Vg
1 i
—YEF| ——, y;y; —(q—1)(px— Et) | =0. 29
Y [q_l,y,y,h(q )(px )} (2.9)

Deriving (2.3) with respect to time we obtain:

1 i
—yEF|——,v:y; =(q— D(px— Et
4 [q_l,y,y,h(q )(px )]

1 ; (1-9
=—ihy \F| ——,y;7; =(@—1)(px— E
lﬁy{ [q_l,y,y,h(q ) (px t)“

d 1 i
—F|——,v;v;-(@—1)(px—Eb)|. 2.10
X o [q_l vivig@—Dip )] (2.10)
For simplicity, let us abbreviate
1 i
F=F|——,y;y;-(@q@—1)(px—Et)|. 211
[q—lyyh(q )(p >} (211)
Using now (2.10), Eq. (2.9) becomes
2 2
__h [1- F0=0] p-9 9" ¢
2m(qg—1) dx2
vinly+(—— 4y +1 [F“*‘”—l] Dk
q—1 ot
a
- iﬁyF(l_‘DEF =0. (212)
Simplifying things in this last relation we arrive at
h? 92 3
—— FO-O___F_iag—F =0 213
2m 0x2 M5 ’ (213)
that can be rewritten as
a
ihq&F =FU-DH,F, (2.14)

where Hy is the free particle Hamiltonian, note that, for g =1, one
reobtains Schrdédinger’s free particle equation. Now, if instead of
(2.3) we deal just with

1

F(x,t)=A|:l+;‘;(1 —q)(px—Et)}ﬁ, (2.15)
then F(0,0) = A and (2.14) becomes
(1-q)
lhqi[F(x,t)]:[F(x,t)] HO[F(X’t):|, (216)
ot [ F(0,0) F(0,0) F(0,0)
or, equivalently,
(@-1
hq[F(X,t)i| E[F(x,t)]:HO[F(x,t)]’ (217)
F(0,0) ot [ F(0,0) F(0,0)
that, in turn can be recast as
q
ihi[F(X’t)] :HO[F(X’”]. (2.18)
ot [ F(0,0) F(0,0)

At this stage we realize that this last equation could be ‘general-
ized’ to any Hamiltonian H as

q
ihﬁ[\/f(x,t)] =H[I/f(x,t)].
at [ ¥(0,0) ¥ (0, 0)
With the change of variables [ (x,t)]9 = ¢(x,t), Eq. (2.19) takes
the form

1
il [qb(x,t)] =H[¢(X’t) ]q’
dt 1 ¢(0,0) #(0,0)

which trivially reduces to the ordinary Schrodinger equation for
q=1.

(2.19)

(2.20)
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