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The tension between unitarity and wave-packet collapse is an annoying problem in quantum mechanics, 
while a breakthrough was made by Zurek recently from the point of view of information transfer. In 
this paper, we reconsider Zurek’s derivation in the setting of generalized probabilistic theories (GPT), and 
establish that actionable information about a system can be repeatedly passed on to other systems only 
when the chosen states of the system have mutual zero fidelity. This may be interpreted as an extension 
of Zurek’s result to GPT.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the indeterminism of measurement out-
comes is a prominent symbol in the conventional interpretation 
of quantum mechanics [1]. Quantum mechanics can be viewed 
as a class of generalized probabilistic theories (GPT) mathemati-
cally. During the past few years, studies on quantum information 
and quantum computation theory poses an urgent request for a 
thorough understanding of the foundations of quantum mechanics 
and how to draw the line between classical and quantum. Among 
such endeavors, Barnum et al. [2,3] proposed a framework called 
generalized probabilistic theories which goes beyond either classi-
cal or quantum probabilities. Many characteristics and properties 
previously considered to be possessed only by quantum theory, 
such as non-locality, monogamy of correlations, uncertainty rela-
tions, non-classical secret key distribution, no-broadcasting, state 
discrimination, Tsirelson’s bound, distinguishability measures (e.g., 
fidelity), entropy, teleportation, etc., are proven to be more general 
ones, which are revisited and discussed in GPT [3–13].

Motivated by the above observations, it is desirable to con-
sider the issue of unitarity and wave-packet collapse arising from 
quantum theory in the framework of GPT. The conflict between 
the two core postulates, unitary evolution versus wave-packet col-
lapse, has been a hard-to-solve problem since the advent of quan-
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tum mechanics. Such challenge was overcome in some sense by 
Zurek, who first derived wave-packet collapse from unitary evolu-
tion and repeatability [14]. This creative work turned out to be 
an extension of quantum no-cloning theorem in the more gen-
eral setting of information transfer, and has received high evalu-
ation [15]. Illuminated by Zurek’s work, Luo presented two new 
approaches by posing weak repeatability or covariant condition in-
stead of repeatability [16]. Utilizing the properties of the fidelity 
between states in GPT, Zander and Plastino studied conservation 
of information during the evolution of a closed physical system 
in GPT [17], which extends the work of [14]. Wu et al. revis-
ited Luo’s derivation in the framework of GPT and generalized 
the corresponding results [18]. Recently, Zurek studied the sce-
nario of mixed states and concluded that repeatedly accessible 
states of macroscopic systems must correspond to orthogonal sub-
spaces [19]. In this paper, we extend Zurek’s recent work to GPT. 
Our main result is that information transfer in GPT also induces 
perfect distinguishability of states.

2. Operational framework of GPT

In this section, we recall the operational framework of GPT (see 
[3,9,17] for more details):

(1) State. The set of all the states of a physical system, called 
state space and denoted by S , is represented by a compact and 
convex set of a finite dimensional space. The pure states are ex-
treme points of S . Note that the state space S in quantum me-
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chanics formalism is the set of all density operators ρ on a Hilbert 
space.

(2) Effect. An affine functional e : S → [0, 1] is called an effect, 
and the probability of e when the system is in state s is e(s). The 
unit effect ι is an affine functional satisfying ι(s) = 1 for all s ∈ S . 
The set of all effects is denoted by E(S). We can embed S in E(S)∗ , 
which maps s to ŝ such that ŝ(e) = e(s) for all e ∈ E(S). So s(e) and 
e(s) can be seen as equivalent by identifying S with Ŝ . Note that 
in quantum theory, an effect is an operator E satisfying 0 ≤ E ≤ I , 
and Tr(Eρ) is the probability of the effect when the system is in 
state ρ .

(3) Measurement. A set of effects {ei} with 
∑

i ei = ι is called a 
measurement, denoted by M = {ei}, which implies that 

∑
i ei(s) =

1 for all s ∈ S . The set of all measurements is denoted by M.
(4) Transformation. A set of affine mappings T : S → S ′ repre-

sents the physical transformations of a system, where S and S ′ are 
both state spaces. Note that in quantum theory, the transforma-
tions are described by completely positive trace-preserving maps.

(5) Composite system. Consider a composite system AB with 
subsystems A and B (which are described by state spaces S A

and S B , respectively). A bi-affine map sAB on E(S A) × E(S B) pro-
vides a description of a composite state on AB . For a product state 
s ⊗ t , it holds that (s ⊗ t)(e, f ) = s(e)t( f ) for states s ∈ S A, t ∈ S B

and effects e ∈ E(S A), f ∈ E(S B). Moreover, sA(e) = sAB(e, ιB)

and sB( f ) = sAB(ιA, f ) defines the marginal states sA and sB of 
sAB ∈ S A ⊗ S B , respectively, where ιA and ιB are the corresponding 
unit effects on S A and S B .

It is worth pointing out that the examples of GPT includes finite 
classical systems, finite quantum systems, hyper cuboid systems, 
etc. [9].

3. Information transfer: orthogonality, repeatability, actionable 
information

In seeking compromise between unitarity and wave-packet col-
lapse, Zurek invoked the postulate of repeatability [14]: After a 
measurement, repeated measurements leave the system states in-
tact and yield the same results in the apparatus. Consider the 
paradigm that a quantum system S is measured by an appara-
tus A. The measurement is conducted by a unitary operator on S A. 
Based on the above repeatability postulate and the unitarity, Zurek 
derived the wave-packet collapse from an information transfer per-
spective. He further addressed the wave-packet collapse problem 
by considering the mixed state case, and derived the discreteness 
of quantum jumps from unitarity, repeatability, and actionable in-
formation [19], which extended the results in [14] to a more gen-
eral scenario.

It is pointed out that it seems to be an idealization to as-
sume that the outcome states of the measured system remain the 
same [16]. Therefore, Luo relaxed the postulate of repeatability by 
proposing the following one: After a measurement, repeated mea-
surements yield the same results in the apparatus irrespective of 
the system state is changed or not. He also further considered an-
other postulate which depends on a unitary covariant condition for 
the apparatus without resorting to any repeatability.

Note that in either derivation of the above-mentioned two pa-
pers, the measurement is carried out by a unitary operator on the 
composite system S A. In this work, we shall use invertible trans-
formations as more general ones. In fact, in GPT, it is assumed that 
a closed physical system with a state space S will evolve under 
the action of invertible transformations � : S → S , which play the 
role of unitaries in quantum mechanics. Such a transformation �
has an inverse �−1 satisfying that �−1(�(s)) = �(�−1(s)) = s for 
each s ∈ S , which can be regarded as a natural generalization of 
U †U = U U † = I in quantum theory. Any transformation on a sys-
tem can be realized by an invertible transformation acting upon a 

certain extended closed system [17], just like the action of a quan-
tum operation on a quantum state can be regarded as a reduction 
of a unitary evolution of the corresponding tensor product state in 
the extended closed quantum system. This assumption is satisfied 
by both classical and quantum mechanics, and will be adopted in 
our discussion in GPT.

In order to give our general derivation, we first recall the defi-
nition of the fidelity between two states s1, s2 ∈ S in GPT [9,17]:

F (s1, s2) = inf
M

Fc(p1(M), p2(M)), (1)

where inf is over all measurements M = {ei}, p1(M) = {ei(s1)} and 
p2(M) = {ei(s2)}, and Fc(x, y) = ∑

i
√

xi yi is the classical fidelity 
between two probability distributions x = {xi} and y = {yi}. Two 
states in GPT are defined as orthogonal if the fidelity between 
them is zero. This is apparently the direct generalization of orthog-
onality of pure states in quantum mechanics. The following lemma 
will play an important role in our derivation [9,17].

Lemma 1. Suppose that S A and S B are two state spaces in GPT, then

(i) F (s1 ⊗ t1, s2 ⊗ t2) ≤ F (s1, s2)F (t1, t2), ∀ s1, s2 ∈ S A, t1, t2 ∈ S B ;
(ii) F (s1, s2) = F (s1 ⊗ t, s2 ⊗ t), ∀ s1, s2 ∈ S A, t ∈ S B .

The notion of measurement is primitive in GPT. Measurements 
and transformations in GPT are closely related to each other. On 
the one hand, let M = {ei} ∈ M be a measurement on a state 
space S , and {s′

i} be a set of states in another state space S ′ , 
then it is easy to check that the mapping φ : S → S ′ given by 
φ(s) = ∑

i ei(s)s′
i is affine, i.e., φ is a transformation which is in-

duced by a measurement [2]. On the other hand, conducting an 
invertible transformation � and a measurement M = {ei} sequen-
tially on a system is equivalent to posing another measurement 
M̃ = {ẽi} on the system. In other words, for all states s ∈ S , it holds 
that ẽi(s) = ei(�(s)). From this observation, it is not difficult to de-
duce the following equation by using Eq. (1) [17]:

F (�(s1),�(s2)) = F (s1, s2), (2)

where � is any invertible transformation. This property extends 
the invariance property of the quantum fidelity under unitary evo-
lutions in quantum theory, and will be used in the following 
derivations in GPT.

We are now ready to extend Zurek’s derivation to the frame-
work of GPT. Consider a system S starting from a mixed state su , 
and a set of measurement apparatuses, A1, A2, . . . , Ak, . . . , with 
initial pure states, a1, a2, . . . , ak, . . . . Then under a sequence 
of information transfer realized by invertible transformations,
�1, �2, . . . , �k, . . . , we get

su ⊗ a1 ⊗ a2 ⊗ · · · ⊗ ak
�1→ su

1 ⊗ au
1 ⊗ a2 ⊗ · · · ⊗ ak

�2→ su
2 ⊗ au

1 ⊗ au
2 ⊗ · · · ⊗ ak

�3→ ·· · . (3)

The above procedure shows that the information about the state 
identity u is first transferred to the measurement apparatus A1
(whose state suffers the change a1 → au

1 and records the system 
state information u), and then is transferred to A2, etc. This is just 
a manifestation of the repeatability postulate. Now what we care 
about is: Under the above scenario of information transfer, if dis-
tinguishable copies of the system state information exists in the 
measurement apparatuses, what features the set of initial mixed 
states of the system S should have? To this end, we assume that 
another system state sv goes through the exactly same transfer 
procedure as Eq. (3):
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