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The familiar Greenberger–Horne–Zeilinger (GHZ) states can be rewritten by entangling the Bell states 
for two qubits with a third qubit state, which is dubbed entangled entanglement. We show that in 
a constructive way we obtain all eight independent GHZ states that form the simplex of entangled 
entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions 
both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering 
n-partite states). Such bases of GHZ-type states exhibit a cyclic geometry, a Merry Go Round, that is 
relevant for experimental and quantum information theoretic applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Entanglement as one of the most fundamental phenomena in 
quantum physics has many fascinating aspects. An amazing fea-
ture that occurs for multipartite systems is entangled entanglement. 
The term was coined by Krenn and Zeilinger [1] to characterize the 
phenomenon that the entanglement of two qubits, expressed by 
the Bell states, can be entangled further with a third qubit, produc-
ing such a particular Greenberger–Horne–Zeilinger (GHZ) state. We 
take up this idea, develop it further and show that all independent 
(maximally entangled) GHZ states, can be expressed, geometrically 
quite obviously, in an entangled entanglement form. These basis 
states configure the magic simplex [2]. The word “magic” goes back 
to Wootter’s magic basis to compute the concurrence [3]. We show 
then explicitly how our construction procedure, which is entirely 
systematic and intuitive, can be generalized to higher dimensions 
d and to any finite number of particles n, namely to n-partite qudit 
states d ⊗ d ⊗ d ⊗ d ⊗ . . . ⊗ d = d⊗n .

To obtain an understanding and intuition of the physics behind 
entangled entanglement we discuss the case of the tripartite GHZ 
states in Section 2, on one hand, with respect to the Einstein–
Podolsky–Rosen (EPR) paradox, and on the other hand, with ref-
erence to the mathematical structure, the freedom to factorize a 
tensor product of algebras (or Hilbert spaces) in different ways, 
which forms the mathematical basis for the phenomenon of en-
tangled entanglement. In Section 3 we introduce our procedure 
how to construct systematically the states of entangled entangle-

E-mail addresses: Gabriele.Uchida@univie.ac.at (G. Uchida), 
Reinhold.Bertlmann@univie.ac.at (R.A. Bertlmann), Beatrix.Hiesmayr@univie.ac.at
(B.C. Hiesmayr).

ment for any higher dimension and number of particles. The use 
of the unitary Weyl operators [4] turns out to be very helpful 
(also known under names like “generalized spin operators”, “Pauli 
group” and “Heisenberg group”, Refs. [5–8]). In Weyl’s book these 
unitary operators, consisting of phase and (cyclic) ladder operators, 
were introduced by a “quantization” of classical kinematics that is 
the reason why the magic simplex is sometimes considered as a 
phase-space.

We also illustrate the geometric structure of the state space 
(see Fig. 2), the symmetries inherent in a magic simplex and the 
cyclicity of the phase operations, when moving from one state to 
another within the simplex. In particular we discover a Merry Go 
Round of the qutrit GHZ states (see Fig. 3). Finally, conclusions are 
drawn in Section 4.

2. Physical aspect and mathematical structure

Let us begin with discussing the physics behind the phe-
nomenon of entangled entanglement. We recall the well-known 
GHZ state [9,10]

|GHZ1−〉123 = 1√
2

(|R〉1 ⊗ |R〉2 ⊗ |R〉3+, |L〉1 ⊗ |L〉2 ⊗ |L〉3
)
,

(1)

where |R〉, |L〉 denote the right- and left-handed circularly polar-
ized photons. Interestingly, expression (1) can be re-expressed by 
decomposing (1) into linearly polarized states |H〉, |V 〉 and Bell 
states

|GHZ1−〉123 = 1√
2

(|H〉1 ⊗ |φ−〉23 − |V 〉1 ⊗ |ψ+〉23
)
, (2)
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Fig. 1. (a) Bob’s photons are in an entangled state. (b) Bob’s photons are in a separable state.

where |φ±〉 = 1√
2

(|H〉 ⊗|H〉 ± |V 〉 ⊗|V 〉) , |ψ±〉 = 1√
2

(|H〉 ⊗|V 〉 ±
|V 〉 ⊗ |H〉) represent the familiar maximally entangled Bell states. 
The linearly polarized states |H/V 〉 are related to the circularly 
polarized states via |R/L〉 = 1√

2
(|H〉 ± i|V 〉).

The GHZ state as expressed in Eq. (2) obviously represents 
entangled entanglement. This feature has been verified experi-
mentally by Zeilinger’s group [11] who has performed a Bell-type 
experiment on three particles, where one part, Alice on line 1, 
projects onto the horizontally |H〉1 or vertically |V 〉1 polarized 
state and the other part, Bob on lines 2 and 3, projects onto 
the maximally entangled states |φ−〉23 or |ψ+〉23 via a Bell state 
measurement based on a polarizing beam splitter [12]. Then the 
authors test a Clauser–Horne–Shimony–Holt inequality established 
between Alice and Bob and find a strong violation of the inequal-
ity (specifically, of the Bell parameter) by more than five standard 
deviations. Thus the entangled states of the two photons on Bob’s 
side are definitely entangled again with the single photon on Al-
ice’s side.

What is the physical significance of it, in particular, in the light 
of an EPR reasoning? Let us start with an EPR-like discussion as 
in Ref. [11]. If Alice is measuring the linearly polarized state |H〉1
then Bob will find the Bell state |φ−〉23 for his two photons (see 
Fig. 1(a)). If she obtains a |V 〉1 state in her measurement then 
Bob will get the Bell state |ψ+〉23. This perfect correlation between 
the polarization state of one photon on Alice’s side and the entan-
gled state of the two photons on Bob’s side implies, under the EPR 
premises of realism and “no action at a distance”, that the entan-
gled state of the two photons must represent an element of reality. 
Whereas the individual photons of this state, which have no well-
defined property, do not correspond to such elements. For a realist 
this is a surprising feature, indeed.

If, on the other hand, Alice is measuring a right-handed circu-
larly polarized state |R〉1 then Bob will find his two photons in 
a separable state |R〉2 ⊗ |R〉3 (see Fig. 1(b)), or if Alice measures 
|L〉1 Bob will get |L〉2 ⊗ |L〉3. Then the two photons of Bob con-
tain individually an element of reality, which is more satisfactory 
to a realist. Thus by the specific kind of measurement, projecting 
on linearly or circularly polarized photons, Alice is able to switch 
on Bob’s side the properties of the two photons — and their reality 
content — between entanglement and separability.

This feature is even more puzzling in case of entangling in-
ternal with external degrees of freedom, which is experimentally 
achieved in neutron interferometry. The experimenters of Ref. [13]
produced a GHZ-like state for single neutrons entangled in path–
spin–energy. There the above considerations also have to hold.

How can we understand this switching phenomenon between 
entanglement and separability? A quantum theorist can trace this 
switch back to two different factorizations of the tensor product 
of three algebras A1 ⊗ A2 ⊗ A3, where A1 belongs to Alice and 
A2 ⊗ A3 to Bob. There is total democracy between the different 
factorizations [14,15], no partition has ontologically a superior sta-
tus over any other one (if no specific physical realization is taken 
into account). For an experimentalist, however, a certain factoriza-
tion is preferred and is clearly fixed by the set-up.

For tripartite states, the GHZ states, which are defined on a 
tensor product of three algebras, there exists the following theo-

rem [14], where ρ = |ψ 〉 〈ψ | denotes the corresponding density 
matrix of the quantum state |ψ〉:

Theorem 1 (Factorization algebra). For any pure tripartite state ρ one 
can find a factorization M =A1 ⊗A2 ⊗A3 such that ρ is separable with 
respect to this factorization and another factorization M = B1 ⊗B2 ⊗B3
where ρ appears to be maximally entangled.

For mixed states, however, such a unitary switching between 
separable and entangled states exists only beyond a certain bound 
of mixedness [14].

Example. To illustrate Theorem 1 we consider the circularly polar-
ized states {|R〉, |L〉}. We find, for example, the following unitary 
matrix U † that transforms the separable state |R〉1 ⊗ |R〉2 ⊗ |R〉3
into the entangled state |GHZ1−〉123 of Eq. (1)

U † |R〉1 ⊗ |R〉2 ⊗ |R〉3 = |GHZ1−〉123 , (3)

where

U = U T ⊗3
0 · Uent · U ⊗3

0 with U0 = 1√
2

(
1 i

1 −i

)
(4)

and Uent =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 0 0 0 1√
2

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
1√
2

0 0 0 0 0 0 − 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Having found the structure of entangled entanglement, it is 
quite natural to ask if other GHZ states can be expressed in a 
similar way. The answer is yes, we can construct a complete or-
thonormal system. Geometrically it is quite obvious how to pro-
ceed. We just have to entangle the opposite states |φ−〉 and |ψ+〉
or |φ+〉 and |ψ−〉 of the 2 ⊗ 2 dimensional tetrahedron of Bell 
states [16–18] with |H〉 and |V 〉, and respect the symmetric and 
antisymmetric property respectively. In this way we immediately 
find an orthonormal basis of eight states

|GHZ1+〉123 = 1√
2

(|H〉1 ⊗ |φ−〉23 + |V 〉1 ⊗ |ψ+〉23
)

|GHZ1−〉123 = 1√
2

(|H〉1 ⊗ |φ−〉23 − |V 〉1 ⊗ |ψ+〉23
)

|GHZ2+〉123 = 1√
2

(|H〉1 ⊗ |φ+〉23 + |V 〉1 ⊗ |ψ−〉23
)

|GHZ2−〉123 = 1√
2

(|H〉1 ⊗ |φ+〉23 − |V 〉1 ⊗ |ψ−〉23
)

|GHZ3+〉123 = 1√
2

(|V 〉1 ⊗ |φ−〉23 + |H〉1 ⊗ |ψ+〉23
)

|GHZ3−〉123 = 1√
2

(|V 〉1 ⊗ |φ−〉23 − |H〉1 ⊗ |ψ+〉23
)

|GHZ4+〉123 = 1√
2

(|V 〉1 ⊗ |φ+〉23 + |H〉1 ⊗ |ψ−〉23
)

|GHZ4−〉123 = 1√
2

(|V 〉1 ⊗ |φ+〉23 − |H〉1 ⊗ |ψ−〉23
)
. (6)
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