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Supersymmetric quantum mechanics (SUSYQM) is a method that can be used for generating complex 
potentials with entirely real spectrum with bound states in the continuum (BIC). These complex 
potentials are isospectral with the initial one, but SUSYQM method adds discrete BIC’s at selected 
energies. Corresponding wavefunctions created by SUSYQM are biorthogonal and complex, hence we can 
discuss their phase rigidity and illustrate the application of SUSYQM on the examples of three specific 
potential profiles (free electron, negative Dirac potential and quantum well with infinite walls).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Bound states in the continuum were first considered by Von 
Neumann and Wigner [1] who modulated the wavefunction in or-
der to make it normalizable, and then used the modulating func-
tion to extract the potential which supports such states. Herrick 
and Stillinger [2–4] showed that the bound states in the continuum 
may exist in atoms and molecules, and also pointed to the possi-
bility of an electron in electric field becoming localized by adding 
a suitable potential. Starting with a separable form of the Hamil-
tonian, Robnik also derived normalizable wavefunctions [5]. Vari-
ous techniques have been employed for the wavefunction modula-
tion [6]. Concerning the localization problem, a tight relationship 
has been established between the asymptotic behavior of the po-
tential envelope and the wavefunction [7].

Supersymmetric quantum mechanics (SUSYQM) is a method 
that can be used to obtain bound states in the continuum part 
of the spectrum. In order to get bound states on the full line we 
introduce a complex potential (applying this technique to a real 
potential leads to bound states only on the half-line x ∈ (0, +∞)

[8,9]) isospectral with the initial one. Each of the complex poten-
tials supports one and only one normalizable wavefunction in the 
continuum part of the spectrum. Real spectra with complex poten-
tials also discussed in [10–15]. In [11–13] focus was on broadening 
a condition of hermiticity to partial reflectivity and time reversal 
symmetry of Hamiltonian and in [14] authors linked some of these 
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Hamiltonians to SUSY transformation, in [15] pseudo-hermiticity 
was introduced in order to generalize real spectra with complex 
potentials even further.

Since the form of the Schrödinger’s equation is similar to the 
Helmholtz equation (with the term labeled ‘the optical potential’), 
it is possible to apply SUSYQM and study BIC’s in photonic crystals 
[16–18], one dimensional heterostructures [19] and quasiperiodic 
systems [20].

The wavefunctions created by SUSYQM [21,22] are complex as 
well, so we can consider their phase rigidity. Phase rigidity rep-
resents the measure of the complexity of the wavefunction, if its 
value equals 1 wavefunction is real and if it equals 0, wavefunction 
is fully complex. It can be physically represented as the measure 
of the alignment between one of the overlapping resonance states 
with one of the scattering states of the environment in open quan-
tum systems [23,24]. Phase rigidity has also been used to char-
acterize mode–mode interaction in dielectric microcavities [25], 
linewidth of lasing modes in unstable lasers [26,27], excess spon-
taneous emission in open sided laser resonators [28], tunability of 
passage time in realistic open quantum systems due to biorthog-
onality of the eigenfunction of non-Hermitian Hamiltonian [29], 
one-dimensional point interactions [30] and transmission through 
a quantum dot [31].

In [21] authors discussed the normalizability of these wave-
functions depending on constants C and λ. In both papers [21,22]
C was considered to be strictly complex, and λ to be real. For stan-
dard SUSYQM C = 0 and λ is real. In this paper we will focus on 
case where C = 0 and λ is strictly complex, because this case is 
not covered in [21,22] and the main results of SUSYQM will be 
significantly different than those presented in [21,22]. We perform 
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Fig. 1. The real potential U0(x), which supports bound states, non-degenerate free 
states (1dfs), and double-degenerate free states (2dfs). Energy ε > min(U0) in the 
main text, represents any energy from the spectrum of U0(x).

an analysis of generated wavefunctions depending on the type of 
spectrum that a chosen state belongs to (in the initial potential) 
and prove that the chosen state will be a bound state (in the com-
plex potential). Considering λ to be complex will yield constrains 
for normalizability, which will be discussed.

2. Theoretical consideration

We consider a general real potential U0(x) which supports con-
tinuum (free) and bound states (Fig. 1). After solving Schrödinger’s 
equation we choose an arbitrary energy ε > min(U0), its corre-
sponding wavefunction denoted as �ε . For all other energies Ei , 
except the chosen energy ε (Ei �= ε) corresponding wavefunctions 
are labeled as �i . Both �ε and �i do not need to be normalized. 
Without loss of generality, we shall consider �ε and �i as real 
functions.

We apply the SUSYQM procedure via energy ε, which results in 
a potential:

Uss(x) = U0(x) − 2α2 d2

dx2
ln

(
λ + I(x)

)
, α2 = h̄2

2m
(1)

where I(x) is:

I(x) =
x∫

x0

|�ε|2dx =
x∫

x0

�2
εdx. (2)

In the above expression, λ has to be considered as a strictly 
complex constant and it can be represented as λ = λr + iλi , where 
λr , λi and x0 are real parameters. �ssε(x) is a wavefunction in the 
complex potential Uss which corresponds to energy ε:

�ssε(x) = �ε(x)

λ + I(x)
. (3)

Furthermore, �ssi(x) are the wavefunctions in the new potential 
Uss which correspond to energies Ei �= ε:

�ssi(x) = �i(x) − �εμi

(λ + I(x))
,

μi =
x∫

−∞
�i�εdx. (4)

The functions �ssε(x) and �ssi(x) are complex and non-normalized.
Derivation of (1)–(4) can be found in Appendix A.

Table 1
Asymptotic values of integral I depending on energy ε.

x → −∞ x → ∞ ε

0 r = const bound state
0 x

2 non-
degenerated 
free state

x
2

x
2 degenerated 

free state

Table 2
Integral J depending on energy ε.

Integral J ε

1
|λi | (atan r+λr|λi | − atan λr|λi | ), λi �= 0 bound state

1
|λi | (

π
2 − atan λr|λi | ), λi �= 0 non-

degenerated
free state

π
|λi | , λi �= 0 degenerated 

free state

2.1. Normalization of �ssε(x)

Let us consider the integral:

J =
∞∫

−∞

∣∣�ssε(x)
∣∣2

dx =
∞∫

−∞

�2
ε

|λ + I(x)|2 dx. (5)

By differentiating (2) to obtain dI = �2
εdx, and inserting it into 

Eq. (5) we can calculate J in the form:

J = 1

|λi|atan

(
I(x) + λr

|λi|
)∣∣∣∣

I(+∞)

I(−∞)

. (6)

The normalized wavefunction �N
ssε(x) then reads �N

ssε(x) = J− 1
2 ×

�ssε(x). This applies only if J is finite and it is required that 
�ssε(x) has no singularities. Depending on the part of the spec-
trum of U0(x) that energy ε belongs to, we get different results 
for J and the corresponding wavefunction.

Table 1 represents asymptotic values of integral I (defined 
in (2)) and it is the consequence of properties of wavefunction 
�ε(x). Parameter x0 is chosen so to satisfy wavefunction normal-
izability, for non-degenerated free states and bound states is taken 
x0 = −∞ and for degenerated free states it can be any finite value 
and we can choose x0 = 0, but generally results of Table 1 do de-
pend on this parameter. In all SUSYQM results (equations (1), (2)
and (4)) integral I(x) is followed by parameter λ, thus for any type 
of state in the spectrum all dependence on x0 on results can be 
joined into parameter λr and x0 wouldn’t influence final results. 
By applying properties from Table 1 to (5) we can calculate inte-
gral J . The results are shown in Table 2.

It is necessary for wavefunction �N
ssε not to have singularities 

hence integral J has to be finite value thus we can further discuss 
results from Table 2 depending on parameter λ.

If the energy ε represents a bound state (ε ∈ bs) of the potential 
U0(x) then if λi → 0 and λr /∈ [−r, 0]:

J → r

λr(r + λr)
. (7)

In case when λi → 0, �N
ssε(x) has a singularity for λr ∈ [−r, 0], 

which is illustrated in Fig. 2.
If the energy ε represents a non-degenerate free state (ε ∈ 1dfs) 

of the potential U0(x) then if λi → 0:

lim
λi→0

( J ) =
{

1
λr

, λr ≥ 0
π
|λi | → +∞, λr < 0.

(8)
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