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The existence of standing high frequency electromagnetic (EM) solitons in a fully degenerate overdense 
electron plasma is studied applying relativistic hydrodynamics and Maxwell equations. The stable soliton 
solutions are found in both relativistic and nonrelativistic degenerate plasmas.
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1. Introduction

A significant amount of recent publications describe electro-
magnetic (EM) waves in relativistic plasmas and majority of them 
discuss possible roles of these waves in different astrophysical phe-
nomena. Highly relativistic plasmas are observed in the cores of 
white dwarfs [1], in magnetosphere of pulsars [2], in the MeV 
epoch of the early Universe [3] and additionally, they probably 
show up in the bipolar jets in Active Galactic Nuclei (AGN) [4]. 
Plasma can be relativistic in two following cases: either bulk ve-
locities of fluid unite volume should be close to the speed of light, 
or the kinetic energy of particles should be greater then their rest 
energy. In compact objects, such as white dwarfs and magnetars, 
the number densities of electrons is believed to be roughly be-
tween 1026 cm−3 and 1034 cm−3 [5,6]. High density plasma can be 
produced in the laboratory as well, indeed contemporary petawatt 
laser systems have the focal intensities I = 2 × 1022 W/cm2 [7]. 
Moreover, pulses with higher than I = 1026 W/cm2 intensities are 
expected to be achieved soon [8]. Superdense plasmas might be 
formed with densities in the range of 1023 cm−3 and 1028 cm−3

[9], during the interaction of such EM pulses with solid or gaseous 
targets. Such plasma will be opaque for conventional laser systems 
operate at wavelengths λ ∼ 1 μm. The Linac Coherent Light Source 
(LCLS) is an X-ray free-electron laser produce femtosecond power-
ful pulses of coherent soft and hard X-rays with wavelengths from 
2.2 nm to 0.06 nm [10]. Exploiting the possibility to focus X-ray 
laser beams on a spot with down to laser wavelength, the focal in-
tensities I � 7 ×1025 W/cm2 are expected to be reached [11]. Suc-
cessful operation of X-ray free-electron lasers in different centers 
world wide [12] opens up new perspectives to study the EM pulse 
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penetration and its subsequent dynamics in super dense plasma in 
laboratory conditions.

Highly compressed plasma with an average interparticle dis-
tance smaller than their thermal de Broglie wavelength, can be 
considered as a degenerate Fermi gas. When plasma density in-
creases, the more ideal it becomes and the interactions of its par-
ticles can be neglected [13].

EM solitons in classical relativistic plasma is being studied in-
tensively [14], but existence and stability of solitary solutions in 
degenerate quantum relativistic plasma are investigated mostly for 
low frequencies (see [15] and references therein). Based on fully 
relativistic hydrodynamic model recently the high frequency soli-
tary solutions have been examined in degenerate electron plasma 
for Langmuir [16] and in degenerate electron–positron plasmas for 
EM waves [17]. The publication goal is to consider existence of a 
standing, high frequency EM soliton in the relativistic degenerate 
electron plasma. Importance of the standing soliton solutions for 
overall dynamics of EM pulses is established theoretically [18–21]
as well as experimentally for classical relativistic plasma [22]. 
These publications state, that during interaction of a circularly po-
larized strong laser pulse and a plasma, part of the laser energy is 
trapped in non-propagating soliton-like pulses. Similar dynamics is 
expected in the case of strong EM pulse interaction with degener-
ate electron plasma.

2. Basic equations

Plasma can be considered cold, if the thermal energy of its elec-
trons is negligible compared to their Fermi energy. In this case 
temperature can be assumed to be zero, even though it is of the 
order of 109 K [23]. For the Fermi energy of electrons we have 
εF = mec2

[(
1 + R2

)1/2 − 1
]

, where R = pF /mec and pF is the 
Fermi momentum. The latter is related to the proper density of 
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electrons n by the following equation pF = mec (n/nc)
1/3, where 

nc = 5.9 × 1029 cm−3 is the normalizing critical number-density. 
Therefore, when n ≥ nc , electrons move with relativistic momen-
tum inside plasma unit volume and the plasma can be told as 
relativistic.

Our investigation is based on the Maxwell equations and fluid 
model of relativistic electron plasma. The ions are considered to 
form a stationary neutralizing background. We begin with the 
manifestly covariant form of the fluid equations for electrons

∂T αβ

∂xβ
= −eF αβnUβ (1)

Here ∂α = ∂/∂xα = (
c−1∂/∂t,∇)

; the Greek indexes take values 
from 0 to 3; T αβ is the energy–momentum tensor describing the 
plasma electrons with charge −e, mass me and the proper density 
n; the metric tensor is gαβ = diag (1,−1,−1,−1); Uα = (γ ,γ V/c)

denotes the local four velocity, where γ = (
1 − V 2/c2

)−1/2
;(

UαUα = 1
)
. This equation implies the conservation of energy and 

momentum. The change of momentum through the collisions is 
neglected.

We assume, that the total number of electrons is conserved, 
thus the following continuity equation is held

∂nUα

∂xα
= 0 (2)

The EM field can be expressed through a tensor F αβ = [E, B]. 
The Maxwell equations in these notations are ∂β F αβ = −(4π/c) Jα

and εαβγ δ∂β Fγ δ = 0. Here Jα = (cρ, J), where J is the current den-
sity and ρ is the total charge density of the plasma.

We use the energy momentum tensor of ideal isotropic fluid 
T αβ = wUαUβ − gαβ P , where w = E + P is the enthalpy per unit 
volume, P is the pressure and E is density of the rest frame in-
ternal energy. If nT /P << 1, plasma can be treated as completely 
degenerate Fermi gas and the following equations are satisfied [24]

P = m4
e c5

3π2h̄3
f (R) (3)

E = m4
e c5

3π2h̄3

[
R3

(
1 + R2

)1/2 − f (R)

]
(4)

where

8 f (R) = 3 sinh−1 R + R
(

1 + R2
)1/2 (

2R2 − 3
)

(5)

The equation of state for the degenerate gas is P ∝ n� , with 
� = 5/3 for nonrelativistic case (R << 1) and � = 4/3 for ultrarel-
ativistic case (R >> 1).

The model of plasma described above implies that the electron 
distribution function remains locally Juttner–Fermian. In case of 
zero temperature this results in thermodynamical quantities, de-
pending only on density E(n), P (n) and w(n). Of course, these 
quantities are functions of xα through the relation n = N/γ , where
N is the electron density in the laboratory reference frame. The 
considered system is isentropic (furthermore, as temperature ap-
proaches zero, entropy tends to zero too). Hence, the following 
thermodynamic equality is held d (w/n) = dP/n and taking into 
account this thermodynamic equality and making some standard 
manipulations (e.g. [25]), Eq. (1) can be represented in the form of 
the following system

∂

∂t
(Gp) + mec2∇ (Gγ ) = −eE+ [V × �] (6)

∂

∂t
� = ∇ × [V × �] (7)

Here, for the generalized vorticity we have � = − (e/c)B + ∇ ×
(Gp), where p = γ meV denotes the hydrodynamic momentum; 
G = G(n) can be called the density dependent “effective mass” fac-

tor of electrons G = w/menc2 = (
1 + R2

)1/2
. Now dynamics of the 

degenerate plasma can be completely described by Eqs. (6)–(7) to-
gether with Continuity and Maxwell equations. In other words, the 
set of equations is complete. The analogous set of equations is de-
rived in Ref. [25] for classical relativistic plasma obeying Maxwell–
Juttner statistics, where G is a function of temperature G = G(T ). 
In contrast, for degenerate plasma w/menc2 = (

1 + R2
)1/2

and as 
a result the effective mass factor of electrons depends just on their 
proper density. The corresponding relation G = [

1 + (n/nc)
2/3]1/2

holds for any ratio n/nc , thus for any strength of relativity [17,26].
We make use of the expressions for fields B = ∇ × A and E =

−(1/c)∂A/∂t −∇ϕ where A and ϕ are vector and scalar potentials 
respectively. Applying the Coulomb gauge condition ∇ · A = 0, the 
Maxwell equations take the following form:

∂2A

∂t2
− c2
A+c

∂

∂t
(∇ϕ) − 4πcJ = 0 (8)

and


ϕ = −4πρ (9)

where J = −eγ nV, is the current density and ρ = e(n0 −γ n) is the 
charge density, with n0 denoting electron (ion) equilibrium density. 
We use equations (6) and (7) to describe wave dynamics in un-
magnetized plasma. Eq. (7) makes clear that if generalized vorticity 
� was zero everywhere once, it will stay zero always. Therefore 
Eq. (6) will reduce to

∂

∂t

(
Gp−e

c
A
)

+ ∇
(

mec2Gγ − eϕ
)

= 0 (10)

Our goal is to find one dimensional localized solutions for 
equations (8)–(10). Let us assume, that every variable depends on 
nothing but coordinate z and time t . As transverse component of 
gradient is zero, Eq. (10) easily gives p⊥ = eA⊥/(cG). Integration 
constant is zero, because p should be zero at infinity, where fields 
vanish. Coulomb gauge condition requires Az = 0, thus the longitu-
dinal motion of the plasma is driven just by the “ponderomotive” 
pressure 

(∼ p2⊥
)

acting via the relativistic γ factor in Eq. (10)

(γ = [
1 + (

p2⊥ + p2
z

)
/m2

e c2
]1/2

). The EM pressure forces electrons 
to move in z direction, the plasma density changes and charge sep-
aration occurs. Longitudinal motion of the plasma is described by 
the following set of equations:

∂

∂t
Gpz + ∂

∂z

(
mec2Gγ − eϕ

)
= 0 (11)

while the continuity (2) and Poisson’s equations (9) become

∂

∂t
γ n + ∂

∂z
(nγ V z) = 0 (12)

∂2ϕ

∂z2
= 4πe(nγ − n0) (13)

The transverse component of the current density is J⊥ =(
ne2/cG

)
A⊥ and substituting it into Eq. (8), we get

∂2A⊥
∂t2

− c2 ∂2A⊥
∂z2

+ �2
e

(
n

n0

G0

G

)
A⊥ = 0 (14)

where n0 is electron (ion) equilibrium density and �e =(
4πe2n0/m∗

e

)1/2
is the Langmuir frequency of the electron plasma. 

In this expression m∗
e denotes effective mass of electron m∗

e =
me G0, where G0 = [

1 + R2
0

]1/2
and R0 = (n0/nc)

1/3.
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