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Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear 
Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is 
difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize 
the velocity space of the entire kinetic system, and give the corresponding analytical expressions for 
the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to 
plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. 
Applications are anticipated in both astrophysical and laboratory plasmas.

© 2015 Elsevier B.V. All rights reserved.

1. Motivation

A fundamental macroscopic description of a magnetized plasma 
is the Vlasov equation supplemented by the non-linear inverse-
square force Fokker–Planck collision operator [1]

∂ fa

∂t
+ v · ∇ fa + ea

ma
(E + v × B) · ∂ fa

∂v
=

∑
b

Cab( fa, fb) , (1)

where fa is the distribution of species a with charge ea and 
mass ma . The electric and magnetic fields depend on the distribu-
tion fa through Maxwell’s equations. This model assumes a statis-
tical description of Coulomb interaction in the limit of small-angle 
scattering, with the changes in fa due to collisions with species b
described by

Cab = ∂

∂v
·
[

Aab fa + ∂

∂v
· (Dab fa)

]
.

The friction and diffusion coefficients are given by the expressions

Aab = Lab

(
1 + ma

mb

)
∂ϕb

∂v
, Dab = −Lab ∂2ψb

∂v∂v
,

where Lab = (eaeb/maε0)
2 ln �ab and ln �ab is the Coulomb loga-

rithm which represents a physical cut-off for small-angle collisions. 
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The Rosenbluth potentials appearing in the friction and diffusion 
coefficients are weighted integrals of the distribution function

ϕb(x,v, t) = − 1

4π

∫
dv′ fb(x,v′, t)

1

|v − v′|
ψb(x,v, t) = − 1

8π

∫
dv′ fb(x,v′, t)|v − v′|

and they satisfy the velocity-space Poisson equations ∇2
v ψb = ϕb

and ∇2
v ϕb = fb . Expressed in terms of the potential functions, the 

Fokker–Planck collision operator is

Cab = Lab

[
ma

mb
fa fb + μab

∂ϕb

∂v
· ∂ fa

∂v
− ∂2ψb

∂v∂v
: ∂2 fa

∂v∂v

]
,

where μab = ma/mb − 1. A common approach for numerical eval-
uation of Cab follows a two-phase method where one first inverts 
the velocity-space Laplacian operators and then directly evaluates 
the collision operator. Boundary conditions for the Poisson equa-
tions can be obtained by limiting the solution to a sub-space and 
evaluating the expressions at the boundary using a multipole ex-
pansion of the potentials [2], or by imposing the free-space solu-
tion outside the sub-space [3]. Another sophisticated approach is 
based on fast spectral decomposition as described in Ref. [4].

In this Letter, we propose a new approach using a mesh-free 
shifted-Maxwellian representation which is intuitively appealing 
and straightforward to implement. The solution thus obtained is 
C∞ smooth, extends to v → ∞, and allows compact representation 
of any interesting macroscopic quantity (number, momentum, en-
ergy density, and so on). The Letter is organized as follows: In Sec-
tion 2 we present the idea for using Gaussian radial basis functions 
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to solve the kinetic equation. The numerical implementation is de-
scribed in Section 3 and simulations in 2D and 3D velocity space 
are presented in Section 4. Finally, we discuss and summarize our 
results in Sections 5 and 6.

2. The Gaussian RBF method

To solve the kinetic equation, Eq. (1), we write the total distri-
bution as a finite sum of shifted Maxwellians

fa(x,v, t) =
∑

i

wi
a(x, t) F i

a(x,v) ,

where each Maxwellian, F i
a = (

γ i
a/π

)3/2
exp [−γ i

a (v − vi
a)

2], is nor-
malized to unity and the weights wi

a allowed to evolve in time. 
The width parameters γ i

a and mean velocities vi
a can be arbitrary 

functions of position. The shifted Maxwellians are nothing other 
than Gaussian Radial Basis functions (RBFs) which have found nu-
merous applications in applied mathematics – in particular for the 
construction of neural networks [5]. For compactness, in what fol-
lows we will retain the spatial dependence of all quantities but 
will not write the dependence explicitly.

The potential functions then take the form

ϕa(v, t) =
∑

i

wi
a(t)ϕ

i
a(v) , ψa(v, t) =

∑
i

wi
a(t)ψ i

a(v),

where the Gaussian RBF potentials ϕ i
a = −

√
γ i

a	(

√
γ i

a |v − vi
a|)

/(4π) and ψ i
a = −(1/

√
γ i

a )
(

√
γ i

a |v − vi
a|)/(8π) are defined in 

terms of the functions 	(s) = erf(s)/s and 
(s) = [s +1/(2s)]erf(s)
+ exp(−s2)/

√
π , where erf(s) is the error function. We thus find a 

simple bilinear expression for the complete non-linear operator

Cab =
∑
k,�

wk
a(t) w�

b(t) Ck�
ab(v) ,

where the Gaussian RBF collision tensor is

Ck�
ab = Lab

[
ma

mb
F k

a F �
b + μab

∂ϕk
a

∂v
· ∂ F �

b

∂v
− ∂2ψk

a

∂v∂v
: ∂2 F �

b

∂v∂v

]
,

such that Ckk
aa(v) = 0. As we have analytical expressions for F i

a(v), 
ϕ i

a(v), and ψ i
a(v), the tensor Ck�

ab(v) is easy to implement and fast 
to evaluate at any point in velocity space.

In problems with azimuthal symmetry, a 2D RBF scheme can 
be developed with axisymmetric ring-like RBF-basis:

F i
a = (γ i

a/π)3/2 I0(2γ i
a vi

a,⊥v⊥) e−γ i
a (v‖−vi

a,‖)2−γ i
a (v2⊥+(vi

a,⊥)2)
,

where I0 is the order-zero modified Bessel function of the first 
kind and (v⊥, v‖) are the cylindrical velocity-space coordinates. 
Although explicit expressions for axisymmetric RBF potentials ϕi
and ψi are not available in a closed form, they can be evaluated 
numerically to machine precision at any requested point.

3. Collocation options

We describe two different methods for obtaining an ordinary 
differential equation for the time evolution of weights: the Galerkin
and the center-collocation projections. In the Galerkin method, the 
kinetic equation – already expanded in the RBF basis – is multi-
plied by each individual basis function and then integrated over 
the entire domain. Conversely, in the center-collocation method, 
the kinetic equation is evaluated at the center of each RBF. Both 
methods yield N equations for the N RBF weights, wi

a , and result 

in a differential equation for the weights that can be written in a 
matrix form.

For the moment, let us illustrate the method by considering the 
spatially homogeneous case with no electromagnetic fields. Then, 
the matrix equation is

∑
j

Mij
a

∂ w j
a

∂t
=

∑
b,k,�

wk
a(t) w�

b(t) C ik�
ab ∀ i ∈ 1,2,3, . . . . (2)

In the Galerkin projection (GP), the matrix Mij is symmetric, typi-
cally diagonally dominant, and given by the expression

(Mij
a )GP =

(
γ i

aγ
j

a

π(γ i
a + γ

j
a )

)3/2

exp

[
− γ i

aγ
j

a

γ i
a + γ

j
a

(
vi

a − v j
a

)2
]

,

whereas in the center-collocation (CC) method, the matrix Mij
a is 

no longer necessarily symmetric, but can still be dominated by the 
diagonal components:

(Mij
a )CC ≡ F j

a(vi
a) = (γ

j
a /π)3/2 exp[−γ

j
a (vi

a − v j
a)

2] .

On the right-hand-side of Eq. (2), the tensor C ik�
ab becomes

(C ik�
ab )GP =

∫
dvF i

a(v) Ck�
ab(v) , (C ik�

ab )CC = Ck�
ab(vi) ,

for the Galerkin and center-collocation, respectively. Obtaining the 
center-collocation tensor (C ik�

ab )CC is merely a matter of evaluating 
the RBF tensor Ck�

ab(v) at the collocation points. Evaluation of the 
tensor (C ik�

ab )GP for the Galerkin projection is somewhat more com-
plicated, although the result may be potentially be more accurate 
or robust.

Nevertheless, to maintain simplicity, we focus hereafter on the 
center collocation-method and omit the CC subscript for brevity. In 
this case the RBF equations for the full non-linear system become∑

j

Mij
a Li j

a w j
a =

∑
b,k,�

wk
a w�

b C ik�
ab , ∀ i ∈ 1,2,3, . . . , (3)

where the operator L

Li j
a

.= ∂

∂t
+ vi

a · ∇ + ea

σ
j

a

[
(v j

a − vi
a) · E + (v j

a × vi
a) · B

]
retains the familiar appearance of the Vlasov operator even though 
the velocity-space has been completely removed from the problem. 
Note that L depends explicitly on species a and implicitly on b via 
the Maxwell equations. In L we have defined the temperature-like 
parameter σ i

a = ma/(2γ i
a ) and also dropped some additional terms 

that arise if the parameters γ i
a and vi

a depend on position. The 
RBF-kinetic equation (3) describes collisional fluid-like evolution 
of the weights in time and space. One physically appealing feature 
of the RBF expansion is that familiar expressions for macroscopic 
fluid moments retain their intuitive form:

Density na =
∑

i

wi
a

Velocity naVa =
∑

i

wi
a vi

a

Temperature
3

2
na Ta =

∑
i

wi
a

[
3

2
σ i

a + 1

2
ma(vi

a − Va)
2
]

Momentum flux tensor �a =
∑

i

wi
a ma

[
σ i

a I+ vi
avi

a

]

Energy flux Qa =
∑

i

wi
a vi

a

[
5

2
σ i

a + 1

2
ma(vi

a)
2
]

.
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