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For the two-band system, an important route to achieve the high Chern number (HCN) topological phase 
is to add the number of low-energy Dirac points. In this work, we try to study the possibility of realizing 
HCN phase in π-flux square lattice when the (n − 1)-nearest-neighboring hoppings Nn are introduced. 
We investigate N4 and N6 intersublattice hopping which can generate new Dirac points, whose chiralities 
and mergings are analyzed. While for intrasublattice hopping which can gap the Dirac points, we studied 
N2 and N5 cases to obtain the HCN phase diagram. We further discuss the experimental detections of 
the HCN phase by the edge states excitations and the transverse Hall conductance response.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Searching new topological states of matter marks one of the 
major challenges in condensed matter physics. In 1988, Haldane 
first proposed the prototypical Chern insulator in honeycomb lat-
tice, in which the quantum Hall effect (QHE) can be realized but 
without the Landau levels [1], or called the quantum anomalous 
Hall effect (QAHE). The most important property of the Chern insu-
lator is that the system can be characterized by the Chern number 
C , which is a topological index of the filled bands. The nonzero C
implies the existence of chiral edge states, giving rise to the dissi-
pationless transport along the system’s boundary. The problem of 
Chern insulator has attracted a lot of studies recently. In Cr-doped 
(Bi1−xSbx)2Te3 magnetic thin film, the Chern insulator phase was 
first reported to be observed experimentally [2], although the phe-
nomena only occurs below about 30 mK.

Among the studies of the Chern insulator, an intriguing prob-
lem is to search the high Chern number (HCN) phase whose Chern 
number is larger than 1. To generate the HCN phase, different 
physical mechanisms are proposed in theory. If the Rashba spin–
orbit coupling is included in Haldane model, the system can be 
regarded as two copies of Haldane model [3,4] and the Chern num-
ber may reach 2. When introducing the distant hoppings in Hal-
dane model, the HCN phase can also be realized [5]. The essence 
of these works is to add the number of low-energy Dirac points. 
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Recent studies suggest that the arbitrary Chern number insulator 
can be produced in a class of flat bands in multilayer systems 
[6,7], in which the band flatness ratio (band gap/bandwidth) will 
reach a larger value for the higher Chern number. In fact, if the 
Hamiltonian vector of two-band is represented in spherical coor-
dinate, when the azimuthal angle is enlarged to be N times, the 
N Chern number phase may be achieved. In addition, there are 
also interesting proposals to generate HCN phase in honeycomb 
lattice by the time-periodic modulation, in which different Flo-
quet subbands in the quasi-energy gap are mixed [8,9]. These new 
theoretical HCN phase discoveries in solid state materials and in 
ultracold atomic systems may help us deepen the understanding 
of the topological band structures of low-dimensional electron gas.

Fortunately, the honeycomb lattice is not a necessary condition 
for the occurrence of the Chern insulator, which can also be re-
alized on the square lattices under certain conditions [7,10–14]. 
More importantly, the recent experimental achievements for ul-
tracold atoms are mainly performed on the square lattice [15,16]. 
While the influence of distant hoppings on the topological proper-
ties of the square lattice is still lacking [17], in this work we try 
to investigate the possibility of realizing the HCN phase in π -flux 
spinless square lattice by this mechanism. When the distant inter-
sublattice hoppings are included in the tight-binding system which 
can generate the new satellite band-touching points around the 
regular Dirac points, we analyze the chirality and merging of the 
Dirac points. On the other hand, when the intrasublattice hoppings 
are included which can gap the Dirac points, we solve the mass 
expressions and further obtain the Chern number phase diagram. 
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In addition, we point out two feasible methods to detect the HCN 
topological phase in experiment. Our studies about the creation 
and control of the new valley degree of freedom may shed some 
insights for use in such applications as data storage and transmis-
sion which are integral to the new valleytronics devices.

2. Distant-neighbor hopping in π -flux square lattice

To model the spinless two-band, a two-sublattice or two-orbit 
system is needed at least. The Hamiltonian which contains the 
minimal ingredients is:

H(k) = h(k) · σ , (1)

where the Pauli matrices σμ (μ = 1, 2, 3) act on the pseudospin 
space and k = (kx, ky) runs over the Brillouin zone (BZ). Here we 
neglect σ0 term as it only breaks the particle–hole symmetry and 
has negligible influence on the topological phase transition dis-
cussed in this work.

The topological phase can be well characterized by the Chern 
number which gives the appearance of quantized Hall conductance 
at the edges of the insulator [18]. In the gapped system, the Chern 
number is defined as the integration of the Berry curvature in the 
momentum space:

C = 1

4π

∫
BZ

dk(∂kx ĥ × ∂ky ĥ) · ĥ, (2)

where ĥ = h/|h| is the unit Hamiltonian vector. For a two-band 
system, the Chern number can be calculated by separately treating 
the chirality of the Dirac points and the sign of mass term h3 as 
follows [5]:

C =
n∑

α=1

Cα, Cα = 1

2
sgn(h3α)χα(k), (3)

where the summation is to the Dirac point (valley) index α and the 
corresponding chirality χα(k) = sgn(∂kx hα ×∂ky hα)z . In Eq. (3), the 
Chern number has been expressed as the sum of the components 
in each valley which equals 1

2 or − 1
2 . For the two-band electron 

system which owns 2N Dirac points, the Chern number may reach 
the highest (lowest) value N (−N) when the component in each 
valley takes 1

2 (− 1
2 ). So a direct route to achieve the HCN phase is 

to add the number of Dirac points in the Brillouin zone. We will 
take π -flux square lattice as an example to illustrate how to gen-
erate the new Dirac points and obtain the HCN topological phases 
by distant-neighbor hoppings.

The π -flux square lattice is consisted of two sublattices A and 
B and there is a staggered magnetic flux π between the neigh-
boring plaquettes. The parameter tn corresponds to the Nn distant 
hopping which is (n − 1)-nearest-neighboring as shown in Fig. 1. 
We choose the gauge that only the hoppings along the direction of 
bonds are affected by the magnetic flux, which means the Periels 
phase factor may affect the hoppings of N1, N3, N6, . . . . In Fig. 1, 
the gauged phase of N1 hopping is positive along the arrows.

The distant hoppings can be divided into two types: intrasub-
lattice and intersublattice. The intrasublattice hoppings contribute 
to the diagonal terms which will induce the mass term, while 
the intersublattice hoppings contribute to the nondiagonal terms 
which may generate the additional Dirac points. We hope the 
physics of the model can be well simulated by cold atoms trapped 
in optical lattices, where Nn hopping integral can be controlled 
precisely [19]. In the following, t1 will be set as the unit of energy.

Fig. 1. (Color online.) The possible hoppings in π -flux square lattice model. The 
hopping integrals from the central A sublattice to the (n − 1) neighbor site placed 
on a concentric circle is denoted by tn . The red (blue) circles show the intersublat-
tice (intrasublattice) hoppings for the central sublattice. The darker (brighter) region 
represents the π (−π) flux and the arrows show the gauged phase ϕ0 = π

4 for N1 
hopping.

3. Dirac points for N4 and N6 distant hoppings

We first consider the realization of additional Dirac points by 
the intersublattice hoppings. The eventual Dirac points should be 
gapped by the mass to yield the nontrivial topological phase. Here 
the 2 ×2 Hamiltonian h(k) in the space spanned by two sublattices 
can be written as:

h(k) =
(

0 f (k)

f ∗(k) 0

)
, (4)

with the nondiagonal element f (k) = h1(k) − ih2(k) or

f (k) =
∑

n

−tn gn(k). (5)

The properties of functions gn(k) up to N8 are summarized in Ta-
ble 1, in which we characterize the properties of hoppings by the 
physical distance, the chemical distance, the number of neighbors 
and the specific expression.

When the system includes only N1 hopping that f (k) =
−g1(k). The two energy eigenvalues are given as ε± = ±|g1(k)|
and the bands touch at the regular Dirac points K+ = π√

2a
(1, 0)

and K− = π√
2a

(0, 1) which correspond to the zeros of f (k). At 
each of these points, there are two degenerate zero-energy eigen-
states on sublattice A or B . Around K± , one can expand f (k) in 
small momentum q = q(cos θ, sin θ). It follows that

f (K+ + q) = 2
√

2a

h̄
q(cosϕ0 cos θ − i sinϕ0 sin θ),

f (K− + q) = 2
√

2a

h̄
q(cosϕ0 sin θ − i sinϕ0 cos θ), (6)

where the linearity in q identifies the band touchings. Evidently, 
the existence of π -flux plays an essential role in forming the 
isotropic Dirac cone, where the corresponding gauged phase fac-
tor gives ϕ0 = π

4 for N1 hopping.
If the band touching at the Dirac point has the form f ∝

(qe∓iθ )n , its chirality is ±n. From the geometrical interpretation, 
when the two-dimensional vector can be written as (h1, h2) ∝
qn(cos(±nθ), sin(±nθ)), for θ sweeping once the interval [0, 2π)

it will rotate counterclockwise (clockwise) around the origin for 
n times [5,17]. Evidently, the chiralities at the Dirac points give 
χ(K±) = ±1 which are opposite at different Dirac points.
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