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We investigate an array of stochastic quantizers for converting an analog input signal into a discrete 
output in the context of suprathreshold stochastic resonance. A new optimal weighted decoding is 
considered for different threshold level distributions. We show that for particular noise levels and choices 
of the threshold levels optimally weighting the quantizer responses provides a reduced mean square 
error in comparison with the original unweighted array. However, there are also many parameter regions 
where the original array provides near optimal performance, and when this occurs, it offers a much 
simpler approach than optimally weighting each quantizer’s response.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The term stochastic resonance (SR) [1–5] is used to describe 
phenomena where improvement of transmission or processing of 
a signal in a nonlinear system is achieved by tuning the noise 
intensity. Since its origins thirty years ago in the field of geo-
physical dynamics [1], SR has received considerable attention in 
a growing variety of systems with various types of signals and 
performance measures [6–21]. Most SR studies carried out today 
occur in threshold-based or potential barrier systems where a sig-
nal is by itself too weak to overcome a threshold or a potential 
barrier [6–21], but the presence of noise allows the signal to cross 
the threshold eliciting a more effective system response. Therefore, 
subthreshold input signals in threshold-based systems were origi-
nally assumed to be a necessary condition for the occurrence of SR.

Interestingly, a form of SR was reported by Stocks [22–24], un-
der the name of suprathreshold SR (SSR), since it operates with 
signals of arbitrary magnitude, not restricted to weak or sub-
threshold signals. Notably, SSR is an important extension of SR 
with potential applications in a range of areas including neural 
systems. For example, SSR has been considered in ensembles of 
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sensory neurons [25], signal quantizers [41], cochlear implant de-
vices [26] and nonlinear detectors [28]. Moreover, artificial sen-
sors, digital beamforming, biological neurons, cochlear implants 
and multiaccess communication systems can all be unified under 
the concept of stochastic pooling networks that manifest the noise-
enhanced processing property [32–34]. Due to the variety of sce-
narios where SSR is observed, a number of performance measures 
have been considered, for instance, mutual information [22,23,
27,29–31], mean square error (MSE) distortion [35,41,43], input–
output cross-correlation [35,38], Fisher information [36,39,43] and 
signal-to-noise ratio [37].

The model studied in [22] that exhibits SSR is effectively a 
stochastic quantizer, since it converts an analog input signal into 
a digital output signal with threshold values randomized by noise 
[40–43]. McDonnell et al. have analyzed SSR in terms of lossy 
source coding and quantization theory, and examined the optimal-
ity of the quantization by using MSE distortion [40–43]. It was 
shown that the case of all identical threshold values is optimal 
for sufficiently large input noise, and a bifurcation pattern appears 
in the optimal threshold distribution with decreasing noise inten-
sity, whether maximizing the mutual information or minimizing 
the MSE distortion [40–43].

In this paper, we investigate the decoding scheme of a quan-
tized signal in the generic SSR model [22]. We propose a new 
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Fig. 1. Weighted summing array of N noisy comparators. It consists of N identical 
comparators (i.e. single bit quantizers), each operating on a common signal x sub-
ject to independent additive noise ηi . The output of each individual comparator, yi , 
is multiplied by the weighted coefficient wi , resulting in the weighted output wi yi . 
The overall output, ŷ, is the sum of the N weighted outputs, i.e. ŷ = ∑N

i=1 wi yi .

decoding scheme, which we refer to as optimal weighted decod-
ing. For different threshold value settings, the MSE distortion curve 
exhibits the SSR effect as a function of noise level and increased 
numbers of comparators. We compare the optimal weighted de-
coding scheme obtained by weighting before summation to that 
of weighting after summation, by analyzing the MSE distortions of 
each. The results show that optimal weighting of the binary quan-
tizers’ outputs before summation is superior to the case assumed 
in the original array, where the unweighted binary responses are 
simply summed. We demonstrate that optimally weighting the re-
sponses reduces the MSE distortion between the original input 
signal and the decoded output signal. However, we also find that 
there are parameter regions where optimal weighting provides a 
negligible reduction in mean square error, and in these regions it 
is therefore beneficial to avoid the additional complexity required 
in finding the optimal weightings and applying them.

This paper is organized as follows: Section 2 gives mathematical 
descriptions of optimal weighted decoding for an array of com-
parators. Section 3 develops the MSE distortion performance of 
weighted decoding for three examples of threshold setting config-
uration. Section 4 compares the MSE distortions between the cases 
of weighting before and after summation. Finally, we present the 
conclusions and discuss further research directions.

2. Optimal weighted decoding scheme

We here consider the weighted summing array of N noisy com-
parators, as shown in Fig. 1. All comparators receive the same con-
tinuously valued input signal x with standard deviation σx . The ith 
comparator is subject to independent and identically distributed 
(i.i.d.) additive noise components ηi with standard deviation ση , 
which are independent of the signal x. The output from each com-
parator, yi , is unity if the input signal plus the noise is greater 
than its threshold θi , and zero otherwise. The noisy binary out-
put of each individual comparator yi is then multiplied by the 
weighted coefficient wi (wi ∈ �), resulting in the weighted output 
wi yi . All weighted outputs are summed to give the overall output 
ŷ = ∑N

i=1 wi yi .
When all weighted coefficients wi (i = 1, . . . , N) are equal to 

unity, the model is identical to that studied in [22]. It is effectively 
a stochastic quantizer [40–43]. The summation of the outputs of 
all the comparators is a discretely valued stochastic encoding of x, 
which can take integer values between zero and N . For obtain-
ing reconstructed signal, we need a decoding method to decode 
the output signal. This is performed by weighting after summa-
tion. When the weighted coefficient wi (i = 1, . . . , N) is arbitrarily 
chosen, the model achieves a decoding function that is performed 
by weighting before summation.

2.1. Wiener linear decoding

Before considering how to optimally weight the quantizer re-
sponses, we first review what is known as Wiener linear decoding, 
as studied in [43]. In this case, we introduce y to denote the un-
weighted sum of the quantizer response, i.e.

y =
N∑

i=1

yi . (1)

It is shown in [43] that, under the condition where all thresh-
old levels are identical and equal to the signal mean, and both 
the signal and noise have even probability density functions, that 
E[y] = N/2. Under these conditions, it is of interest to consider 
how to optimize the MSE between the input signal, x, and a linear 
decoding of y written in the form

ŷw = 2c

N
y − c. (2)

The result of this operation, ŷw can be thought of as the recon-
structed value of the input signal, with the error between the 
input x, and the reconstructed output ŷw being

ε = x − ŷw. (3)

It is straightforward to derive the optimal solution for c as

c = NE[xy]
2 var[y] , (4)

where var[y] = E[y2] − N2/4 is the variance of y [43]. This is 
known as the Wiener optimal linear decoding scheme for minimiz-
ing MSE distortion [44]. The MSE distortion for Wiener decoding 
can be written as [43]

MSEw = E[x2]
(

1 − E[xy]2

E[x2]var[y]
)

= E[x2](1 − ρ2
xy), (5)

where ρxy is the correlation coefficient between the input signal x
and the output y. Equation (5) also shows that the MSE distortion 
of Wiener decoding scheme is entirely dependant on the correla-
tion coefficient ρxy .

2.2. Optimal weighted decoding

We now consider the case shown in Fig. 1, where arbitrary 
multiplicative weightings wi (i = 1, . . . , N) are applied to the bi-
nary quantizer outputs. We seek to choose the optimal weights, 
wo = [wo

1, w
o
2, · · · , wo

N ]� under which the MSE distortion between 
the decoded signal and the input is the minimum. We denote this 
decoding scheme as optimal weighted decoding, and find the optimal 
weights by applying least squares regression to a data obtained by 
simulating a sequence of samples from the input signal, and the 
resulting binary quantizer responses from each sample.

To begin, we introduce a vector x of size (K × 1) to denote 
a sequence of K independent samples drawn from the input sig-
nal’s probability distribution. We also introduce a matrix Y of size 
(K × N) to denote the N threshold responses for each of the 
K input samples. We denote an arbitrary vector of weights as 
w = [w1, w2, · · · , w N ]� and the optimal weights as wo. Ideally, we 
desire wo to satisfy

Ywo = x. (6)

However, for K > N (in practice we desire K � N), this is an over-
complete system of linear equations, and we therefore follow the 
standard approach of seeking to find wo that minimizes the MSE 
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