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Chaotic behavior is a common feature of nonlinear dynamics, as well as hyperchaos in high-dimensional
systems. In numerical simulations of these systems it is quite difficult to distinguish one from another 
behavior in some situations, as the results are frequently quite “noisy”. We show that in such systems 
a global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. This 
fact provides a mechanism for these noisy results. The coexistence of chaos and hyperchaos is proved via 
Computer-Assisted Proofs techniques.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It’s only a few decades since famous discovery of Lorenz [1]
that deterministic systems can exhibit sensitive dependencies on 
initial conditions. However, a large number of researchers have 
been working deeply in the development of theoretical basements 
needed for the analysis of chaotic systems. A recent cornerstone 
theoretical result was the Tucker’s computer-assisted proof of the 
existence (and of the mathematical structure) of the Lorenz chaotic 
attractor [2–4]. Furthermore, it has been shown that these sys-
tems reproduce nicely complex behaviors found in real systems 
of diverse nature [5–11]. Most of the results have been stated 
in three-dimensional models, where, due to the restricted phase-
space only low-dimensional chaos can be observed. The remaining 
main question is: What changes when higher-dimensional systems 
are analyzed?

Chaotic systems are characterized by (at least) one direction 
of exponential spreading. A common way to detect this circum-
stance is by calculating the maximum Lyapunov exponent [12] of 
the orbit. If it is positive, the orbit exhibits sensitive dependence 
on initial conditions, and this is a standard indication of chaotic 
behavior (we remark that a positive Lyapunov exponent is not al-
ways an indication of chaos, as shown, for instance, in [13–16]). 
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If the number of directions of spreading is greater than one, the 
behavior of the system is hyperchaotic [17]. To detect this situa-
tion it becomes necessary to calculate more Lyapunov exponents 
and to determine how many of them are positive. Note that for 
continuous autonomous dynamical systems, chaos can appear in 
systems with dimension greater than or equal to three.

The behavior (and therefore its analysis) of hyperchaotic sys-
tems is much more complicated than the case of systems with just 
a single positive Lyapunov exponent. There are two main reasons, 
firstly the need for a fourth dimension to the appearance of hyper-
chaos, which makes some tools of analysis for three-dimensional 
chaotic models not valid; on the other hand, the existence of 
more than one direction of spreading allows the system undergo
a broader spectrum of bifurcations. However, in practical appli-
cations it is necessary to model problems with dimension higher 
than three, in some of which hyperchaotic behavior appears like in 
mathematical models of electroencephalograms, chemical systems, 
electronic circuits [18–21] and in most of the networks of basic 
continuous systems, as coupled Lorenz or Rössler systems [22]. 
Besides, note that contemporary numerical weather prediction 
schemes are based on ensemble forecasting. Ensemble members 
are obtained by taking different (perturbed) models started with 
different initial conditions, an example of such kind of systems is 
the Lorenz-96 model [23]. In all these kinds of systems the ap-
pearance of hyperchaos is quite natural due to their dimension. In 
addition, this high dependence on initial conditions experienced by 
hyperchaotic systems has practical applications, such as encryption 
of information [24,25].
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That is why in the last two decades many articles have ap-
peared in which the authors study dynamical systems with hy-
perchaotic behavior [26–30]. Many of them focus on the transition 
from chaotic to hyperchaotic behavior. The problem is that the nu-
merical study of these systems is sometimes no clear at all, giving 
really a confuse analysis about whether the system is chaotic or 
hyperchaotic [31]. Therefore, one of the main goals of this paper 
is to study in detail the main reason of why most of these studies 
really fail in giving a clear picture of what happens in the system. 
We show that the main behavior of these systems is hyperchaotic, 
but it can be a transient behavior or an attracting one. This du-
ality is rigorously established via Computer-Assisted Proofs (CAP) 
techniques and it gives a mechanism for the “noisy” simulations in 
many studies [31].

The paper is organized as follows. In Section 2 we present sev-
eral numerical simulations on the 4D Rössler model to study the 
appearance of chaotic and hyperchaotic behaviors and how the re-
sults depend on the way of computing the Lyapunov exponents. 
In Section 3 we give the basic steps of a computer-assisted proof 
of the coexistence of chaotic and hyperchaotic behavior, giving in 
some situations the existence of long hyperchaotic transients that 
may give rise to “noisy” numerical simulations. Finally, in Section 4
we present some conclusions.

2. Chaos and hyperchaos: numerical studies

Our first question is to study the detection of the different be-
haviors (regular, chaotic or hyperchaotic) of the dynamical models. 
The usual approach is to calculate two or more dominant Lyapunov 
exponents and determine how many of them are positive. Along 
this paper, we will use, as paradigmatic example, the well-known 
4D Rössler model [17], given by:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = −(y + z),

ẏ = x + ay + w,

ż = b + xz,

ẇ = −cz + dw,

(1)

where we fix the values of parameters b = 3.0 and d = 0.05, and 
we allow to change the values of a and c. This model was the first 
model where it was shown the existence of hyperchaotic behav-
ior.

In Fig. 1 we present two biparametric plots showing the differ-
ent behaviors based on the Lyapunov exponents computed using 
the algorithm of Wolf et al. [32]. The only difference in the sim-
ulations is that the lower picture is done considering a transient 
time 3 × 104 before computing the exponents. In the simulations 
we have differentiated the cases of having two large positive Lya-
punov exponents (strong hyperchaos) with the case of having two 
positive values but one of them quite small (weak hyperchaos). 
The colors in the figure determine the different behaviors detected 
in the simulations. White represents a limit cycle, maximum Lya-
punov exponent λ1 = 0 and the others λ2,3,4 < 0; blue for torus, 
λ1,2 = 0 and λ3,4 < 0; red for chaotic, λ1 > 0, λ2 = 0 and λ3,4 < 0; 
green for weak hyperchaos (see Fig. 3), 0.05 > λ1 > λ2 > 0, λ3 = 0, 
λ4 < 0; brown for strong hyperchaos, λ1 > 0.05 > λ2 > 0, λ3 = 0, 
λ4 < 0. Comparing both pictures, we can see how the upper pic-
ture is completely dominated by brown color, representing hyper-
chaotic behavior. Note that in almost all the results we have a 
“noisy” picture without giving a clear study of the real behavior, 
especially in the upper plot. This situation appears also in most 
of the simulations in literature [31]. In contrast, in the lower pic-
ture, wherein we have used the transient time, those structures 
that were hardly visualized in the upper picture, now appear in 
a clearer way, but still some “noisy” patterns appear. The integra-
tion time (without considering the transient time) used in both 

Fig. 1. Lyapunov exponents biparametric plots showing periodic (limit cycles, 
LC), quasiperiodic (torus, T), chaotic (Ch), weak-hyperchaotic (WH) and strong-
hyperchaotic (SH) behaviors. (Top) without transient time in the simulations and 
(bottom) with transient time. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)

Fig. 2. Time evolution of the Lyapunov exponents depending on using or not tran-
sient time and depending on the initial conditions. Red, without transient time but 
with initial conditions that go directly to the chaotic attractor; blue, without tran-
sient time, with initial conditions that go first close to the hyperchaotic saddle; 
green, with transient time. (For interpretation of the references to color in this fig-
ure, the reader is referred to the web version of this article.)

pictures is 3000, the first question is whether the upper pic-
ture, at least, correctly identifies the behavior of the system at 
that final moment. Fig. 2 shows how the calculation of exponents 
keeps memory of past behavior, taking time to recognize behavior 
changes [33]. This tells us that if we want to classify the behavior 
of the system at any given time, we must try to start the calcu-
lation of Lyapunov exponents from a time at which the system 
experiences such behavior. If we want to study the type of attrac-
tor which goes into the dynamics of the system, then we have to 
consider a sufficiently long transient time. We can see that the 
second picture of Fig. 1 still shows “noise”, so that higher tran-
sient and/or integration time is necessary to get an absolutely clear 
picture. In a more detailed study [34], it has been found that a 
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