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By introducing a modulation parameter (ξ ), we study the one-dimensional correlated system with 
modulated hopping, on-site (U ) and nearest-neighbor (V ) repulsions in the weak-coupling regime. The 
induced three-body attraction changes topology of the conventional phase diagram. Besides the usual 
CDW and SDW phases, a BSDW phase exists for |U − 2V | < 8tξ2/π . In the absence of V , an insulator–
metal transition takes place, and the TS phase is realized for ξ >

√
πU/8t. Phenomenologically, the 

general quantum phase diagram including insulating and superconducting phases is discussed.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The study of low-dimensional systems and electron correla-
tion continues to be an important subject in condensed matter. 
The one-dimensional Hubbard model is suggested to be an ap-
propriate candidate for describing properties of low-dimensional 
strongly correlated electron systems. The Hubbard model describes 
spin-1/2 electrons which may hop between sites and interact with 
each other via on-site potential. At half filling, its low-energy ex-
citation is exactly charge-spin separable. For all values of on-site 
repulsion, the ground state is a Mott-insulator, exhibiting a critical 
spin-density-wave (SDW) state. This behavior is caused by Umk-
lapp scattering in the weak-coupling picture while it is caused by 
an effective Heisenberg exchange in the strong-coupling regime. 
The Hubbard model has a long history of research and is relevant 
to a wide variety of quasi-one-dimensional materials, such as poly-
mers [1], strontium cuprates [2] and the charge transfer salt TTF-
TCNQ [3]. Nevertheless, the extensions of the Hubbard model with 
inter-site interactions are believed to give rise to much more com-
plicated dynamics. A simple extension is the conventional Hubbard 
model with a nearest-neighbor repulsion (V ) (hereafter the t-U -V
model) [4]. Much effort has been devoted to its ground state phase 
diagram at half filling [5–19]. For a long time, it was widely ac-
cepted that the phase diagram of the t-U -V model consists of 
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two phases, the SDW phase for U > 2V and CDW (charge-density-
wave) phase for U < 2V . Such a common viewpoint had not been 
changed until Nakamura pointed out that a bond-charge-density-
wave (BCDW) state exists at U � 2V in between the SDW and 
CDW phases for small to intermediate values of U and V [12]. 
Such an astonishing argument triggers increased interest in the 
t-U -V model [13–19]. Quite a few works reconfirmed numerically 
existence of the BCDW state. However, there is disagreement about 
the position of the tricritical point, which was reported to range 
from Uc � 1.5 to Uc � 5 (with V c � Uc/2).

To clarify the emergent BCDW phase, the extra interactions 
were considered. Nakamura claimed that the correlated hopping 
(X) enhances a dimerized phase [12]. This argument was rein-
forced by Japaridze’s work, where the on-bond interaction (W ) 
joins together [20]. Huang et al. proposed that the additional an-
tiferromagnetic spin coupling ( J ) induces a BCDW phase [21]. On 
the other hand, the t-U -V model can be generalized by modifying 
the hopping term instead of the interaction terms. In this letter we 
will treat such a one-dimensional interacting electron system, and 
the model Hamiltonian considered is given by

H = −t
∑
j,α

(c†
j,αc j+1,α + h.c.) + U

∑
j

n j↑n j↓ + V
∑

j

n jn j+1, (1)

with the deformation operators being

c j,α = c j,α(1 − ξn j,α), (2)
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where the introduced parameter ξ modulates the hopping matrix 
element. For ξ = 0, the conventional t-U -V model is recovered. 
When ξ = 1, the double occupancy state is completely excluded. 
Therefore, it is sufficient to define 0 < ξ < 1. However, one imme-
diately observes that the modulated hopping terms will induce ex-
tra two-body and three-body interactions. Below, we will examine 
influence of the modulated hopping on the ground-state phase dia-
gram of the Hamiltonian (1). We restrict our consideration to small 
values of repulsive interactions (U/t, V /t � 1) and small modula-
tion parameter (ξ � 1), where the weak-coupling theory armed 
with the bosonization and RG techniques can be safely applied. 
As will be shown, in the absence of V , an insulator–metal transi-
tion takes place at ξc = √

πU/8t , and the triplet-superconducting 
(TS) phase is realized for ξ ≥ ξc . In the presence of U and V , the 
induced three-body interaction breaks an accidental symmetry be-
tween the backscattering and the Umklapp processes at U = 2V , 
separating the synchronized Gaussian and spin-gap transition into 
two branches in between a bond-spin-density-wave (BSDW) phase 
is realized. The corresponding ground-state phase diagram con-
tains three insulating phases, characterized by the CDW phase for 
2V − U > 8tξ2/π , the BSDW phase for |2V − U | < 8tξ2/π , and the 
SDW phase for U − 2V > 8tξ2/π . We have not found the contro-
versial BCDW phase.

2. Weak-coupling theory analysis

We rewrite the Hamiltonian (1) in terms of the defined defor-
mation operators (2) as

H = HtU V + Htξ + Htξ2 , (3)

with the components

HtU V = −t
∑
j,α

(c†
j,αc j+1,α + h.c.) + U

∑
j

n j,↑n j,↓

+ V
∑

j

n jn j, (4)

Htξ = tξ
∑
j,α

[c†
j,αc j,α(n j,α + n j+1,α) + h.c.], (5)

Htξ2 = −tξ2
∑
j,α

(c†
j,αc j+1,αn j,αn j+1,α + h.c.). (6)

Here, the HtU V part describes the familiar t-U -V model. The Htξ
and Htξ2 terms denote the induced two-body and three-body in-
teractions, respectively. The minus in the Htξ2 term represents the 
attraction, compensating the excessive repulsion in the Htξ term. 
It is interesting to notice that these induced interactions are pro-
portional to ξ and ξ2, respectively. Therefore, when ξ � 1, all the 
induced interactions can be treated as perturbations.

In one dimension, the bosonization approach is a powerful 
tool to analyze interacting electrons. The 1D low-energy ex-
citation spectrum is linearized around left (L) and right (R) 
Fermi points (±kF ) and the operator c j,α is rewritten as c j,α →√

a
∑

r=L,R ψr,α(x), with ψr,α(x) annihilating a fermion of spin α
on the branch r = L/R . These chiral fermion fields can be described 
by boson operators ϕL/R,α via the standard formula [22]

ψL,α(x) = 1√
2πa

e−i
√

4πϕL,α(x),

ψR,α(x) = 1√
2πa

ei
√

4πϕR,α(x). (7)

We define a pair of conjugate scalar fields φα(x) and θα(x),

φα(x) = ϕL,α(x) + ϕR,α(x), (8)

θα(x) = ϕL,α(x) − ϕR,α(x), (9)

and introduce their linear combinations,

φc/s(x) = φ↑(x) ± φ↓(x)√
2

, θc/s(x) = θ↑(x) ± θ↓(x)√
2

, (10)

describing the charge (c) and spin (s) degrees of freedom, respec-
tively. Thus, the bosonized version of the Hamiltonian (1) describ-
ing low-energy states acquires the form H = Hc + Hs , with

Hc = v F

2βc

∫
dx[(∂xφc)

2 + β2
c (∂xθc)

2]

+ g3⊥
2aπ2

∫
dx cos(

√
8πβcφc), (11)

Hs = v F

2βs

∫
dx[(∂xφs)

2 + β2
s (∂xθs)

2]

+ g1⊥
2aπ2

∫
dx cos(

√
8πβsφs). (12)

Here we have defined the Luttinger parameters

βc � 1 + gc

4πt
, βs � 1 + gs

4πt
. (13)

v F is the Fermi velocity, and at half filling v F = 2ta. The small bare 
coupling constants read

gc = 8ξ2

π
t − U − 6V , (14)

gs = g1⊥ = 8ξ2

π
t + U − 2V , (15)

g3⊥ = 8ξ2

π
t − U + 2V . (16)

The relation gs = g1⊥ comes from the spin SU(2) symmetry.
In obtaining expressions (11) and (12), we discard the strongly 

irrelevant charge-spin term which has higher scaling dimension-
ality in the weak-coupling limit, as in other works [20,23–28]. In 
this case, the charge and spin modes exactly separate. Within this 
approximation, the model can be analyzed by the standard “g-
ology” technique. To this end, we examine the relative importance 
of these couplings by the RG analysis in the weak-coupling regime. 
The low-energy properties of the system are described by pairs of 
RG equations for the effective coupling constants �i [25,27]

d�c(l)

dl
= −�2

3⊥(l),
d�3⊥(l)

dl
= −�c(l)�3⊥(l), (17)

d�s(l)

dl
= −�2

1⊥(l),
d�1⊥(l)

dl
= −�s(l)�1⊥(l), (18)

where we have performed the scale transformation of the cutoff 
a → aedl , with l being length scale. The dimensionless running 
coupling constants �i(0) = gi/2πta. These scaling equations de-
termine the RG flow diagram, shown in Fig. 1.

Depending on the constructed RG diagram, we can directly in-
vestigate influences of the Umklapp- and the backward-scattering, 
which drive the charge-gap and spin-gap transitions, respectively, 
if they are relevant. We first consider the spin channel. The spin 
SU(2) symmetry guarantees that the RG flows are exactly along the 
separatrix �s = �1⊥ , and hence the spin excitation is determined 
only by signs of the bare coupling gs . For gs > 0, �1⊥(l) tends to 
zero with increasing l. The spin channel describes gapless excita-
tion (�s = 0), and one obtains a free phase field φs . For gs < 0, 
|�1⊥(l)| grows with increasing l. When the length scale arrives at 
the correlation length λs , �1⊥(l) flows to a strong coupling fixed-
point �∗

1⊥(l → ln λs) = −∞. In this context, the expectation value 
of the spin field is pinned at 〈φs〉 = 0 so that the system gains the 
energy. This indicates that the spin-gap transition takes place at
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