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The standard Mie theory for the extinction of electromagnetic radiation by a metal cylinder that is 
irradiated by a normally incident plane wave is extended to the case of a metallic nanowire, where two 
quantum longitudinal waves are excited. The modification of the Mie theory due to quantum diffraction 
effects is included by employing the quantum hydrodynamic approximation and applying the appropriate 
quantum additional boundary conditions. The extinction properties of the system and their differences 
with previous treatments based on the standard local and nonlocal models are shown. Also, as an 
example the validity of the nonretarded approximation in the quantum nonlocal optical response of a 
sodium nanowire is discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The theory of light scattering by infinite metallic nanowires and 
nanotubes has been extended by several authors [1]. Considering a 
thin nanowire, the standard electromagnetic scattering formalism 
for a circular cylinder was extended in Ref. [2] to include lon-
gitudinal plasmon resonances. Boustimi et al. [3] determined the 
nonlocal linear optical response of a nanowire in the framework 
of the self-consistent method and a jellium model. The theoretical 
study of the effect of wall thickness on the light scattering from 
homogeneous gold single-walled nanotubes has been investigated 
by Zhu [4]. Wu et al. [5,6] calculated the extinction spectra of two-
layered homogeneous gold nanowires, by using the vector wave 
function method. Raza et al. [7,8] studied the optical properties of 
spatially dispersive nanowires and nanotubes and they found that 
unusual resonances due to nonlocal response do exist in plasmonic 
nanowires, but only above the plasma frequency, not in the visible. 
Hewageegana [9] used a theoretical model for the static polariz-
ability of a nanowire that allows the inclusion of nonlocal effects, 
according to the method of Refs. [10,11]. Also, the electromagnetic 
wave scattering from the metallic single-walled carbon nanotubes 
are studied in [12,13]. In this way, recently we derived the ex-
tinction properties of the random metal–dielectric nanocomposite 
cylinders, and investigated the dependence of the extinction spec-
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trum on the nanoparticles’ shape and concentration as well as on 
the cylinder radius and the incidence angle for both TE and TM 
polarization [14].

Furthermore, Li and Yin [15] investigated the optical response 
of a metallic nanowire using both the Drude and standard hydro-
dynamic (SHD) models. By comparing the results of two models, 
they found that the Fano-like resonances of subsidiary peaks orig-
inated from the nonlocality. However, as mentioned in [16] the 
nonretarded SHD theory gives rise to spurious oscillations in the 
plasmon spectra of metallic nanostructures with sharp tips or nar-
row gaps [17,18]. As a result the SHD theory may not be appli-
cable for investigating the nonlocal effects of electron excitations 
in nanometer-sized structures, because it ignores the quantum na-
ture of the excited electrons in the metal. Inspired by the above 
result, we used the quantum hydrodynamic (QHD) model [19–26]
and studied the quantum nonlocal (QNL) polarizability of a metal-
lic nanowire, in the quasistatic approximation [27]. Also, we dis-
cussed the QNL effects on the surface and bulk plasmon modes 
of a cylindrical metallic nanowire in the nonretarded approxima-
tion, thus neglecting retardation effects [28]. In the present work, 
we wish to develop the previous results [2,27,28] and discuss the 
QNL effects on the extinction properties of metallic nanowires in 
the presence of the retardation effects. In this way, by employing 
the linearized QHD theory and applying the appropriate additional 
quantum boundary conditions, we extend the classical Mie the-
ory for the extinction of electromagnetic radiation by a metallic 
nanowire, where two quantum longitudinal waves are excited.
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This paper has the following structure. In Section 2, we extend 
the QNL electrostatic approximation to develop a retarded theory 
by including retardation effects into the calculations. In Section 3, 
we use the retarded model to derive extinction spectra of a sodium 
nanowire and results are compared with previous works. We then 
conclude with a summary of our results in Section 4.

2. Theory

Let us consider an unmagnetized cylindrical nanowire of ra-
dius a and infinite length that aligned along the z-axis and sur-
rounded by a homogeneous dielectric environment with permit-
tivity εM . We use cylindrical coordinate (ρ, φ, z) for an arbitrary 
point in space. In the present system, the metal supports both the 
usual transverse and quantum longitudinal waves and above the 
plasma frequency both types of waves can propagate. Here it is 
assumed that the QNL responses of the system are dominated by 
the quantum nonlocality induced by free electron gas, while the 
bound electrons only contribute to local responses. Thus in the 
hydrodynamic model, the dielectric properties of nanowires are 
characterized by both the usual Drude transverse dielectric func-
tion, as

εT = ε∞ − ω2
p

ω(ω + iγ )
, (1)

and the QHD longitudinal dielectric function [20]

εL = ε∞ − ω2
p

ω(ω + iγ ) − α2k2 − β2k4
, (2)

where ω is the frequency, k is the QNL longitudinal wave vec-
tor, ωp is the classical plasma frequency in homogeneous electron 
quantum plasma. Also, ε∞ in general is frequency-dependent and 
takes into account those polarization effects that are not due to the 
free electrons, such as interband transitions [27,29], α = √

3/5v F , 
and β = h̄/2me . We note that the second term in denominator of 
Eq. (2) is regarded as the quantum statistical effect caused by the 
internal interactions in the electrons species and the third term 
regarded as quantum diffraction effect comes from the quantum 
pressure.

Now, we assume that the system be exposed by a normally in-
cident beam in which the electric field of it is perpendicular to 
the cylinder axis. This is the polarization for which the excitation 
of longitudinal quantum plasma modes occurs. When the incident 
electric field is parallel to the cylinder axis, no surface and bulk 
plasmon resonance peaks are found in the far-field spectra (not 
shown here) because the polarization direction along the axis of 
quantum wire cannot induce the collective motions of the conduc-
tion electrons.

The vector cylindrical harmonics functions can be defined ac-
cording to Ref. [30] as follows:

Mm = ∇ × [ez Zm(kρ)exp(imφ)], (3)

Nm = (1/k)∇ × Mm, (4)

Lm = ∇[Zm(kρ)exp(imφ)]. (5)

In component form these vector harmonics are

Mm = k

(
eρ

imZm(kρ)

kρ
− eφ Z ′

m(kρ)

)
exp(imφ),

Nm = ezkZm(kρ)exp(imφ),

Lm =
(

eρkZ ′
m(kρ) + eφ

imZm(kρ)

ρ

)
exp(imφ).

Here k is given by kT = √
εT ω/c for the transverse modes and

k±
L =

⎧⎨
⎩− α2

2β2
± α2

2β2

[
1 + 4β2

α4

[
ω(ω + iγ ) − ω2

p

ε∞

]]1/2
⎫⎬
⎭

1/2

,

for the longitudinal modes inside the nonmagnetic quantum cylin-
der and by kM = √

εMω/c outside it, where c is the light speed in 
vacuum. Also, eρ , eφ , and ez are unit vectors in ρ , φ, and z di-
rections, respectively, and Zm(kρ) represents a cylindrical Bessel 
or Hankel function, and is chosen as follows. Inside the cylin-
der Jm(kT ρ) is used for the transverse modes and Jm(k+

L ρ) and 
Jm(k−

L ρ) are used for the quantum longitudinal modes. Outside 
the cylinder Jm(kMρ) and Hm(kMρ) are used for the incident and 
scattered waves, respectively. We note that the Hankel function is 
chosen to indicate that the scattered field is a wave traveling in 
the outward radial direction. The expansion of the incident elec-
tromagnetic field is

Ei = −i
+∞∑

m=−∞
EmMm(kMρ), (6)

Hi = − kM

ωμ0

+∞∑
m=−∞

EmNm(kMρ), (7)

where Em = E0(−i)m/kM . The expansion of the transmitted and 
scattered electromagnetic fields can be represented as

Et =
+∞∑

m=−∞
gm EmMm(kT ρ), (8)

Ht = − ikT

ωμ0

+∞∑
m=−∞

gm EmNm(kT ρ), (9)

Es =
+∞∑

m=−∞
iam EmMm(kMρ), (10)

Hs = − ikM

ωμ0

+∞∑
m=−∞

iam EmNm(kMρ). (11)

Furthermore, in the nanowire, at the same frequency ω, there are 
two quantum longitudinal waves (bulk plasmons) that can be de-
scribed by the following electric fields

E+
L =

+∞∑
m=−∞

h+
m EmLm(k+

L ρ), (12)

E−
L =

+∞∑
m=−∞

h−
m EmLm(k−

L ρ). (13)

The unknown expansion coefficients am , gm , h+
m , and h−

m can be 
determined by the appropriate boundary conditions at the surface 
of the cylinder. The usual two classical boundary conditions at the 
plasma–dielectric interface require the continuity of the tangential 
components of the electric and magnetic fields across the interface. 
We note that in the nanowire both the transverse and longitudi-
nal (usually neglected) waves give a contribution to the value of 
electric field, we have(

Eiφ + Esφ
) |ρ=a=

(
Etφ + E+

Lφ + E−
Lφ

)
|ρ=a, (14)

(Hiz + Hsz) |ρ=a= Htz |ρ=a . (15)

Since we have allowed for the excitation of the two quantum lon-
gitudinal modes inside the cylinder, the two above boundary con-
ditions are not sufficient to determine the scattering amplitudes 
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