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A computational method is presented for the evaluation of transmission probabilities for thin potential 
barriers by evolving an ensemble of transmitted quantum trajectories. A single row of second-order 
trajectories computed using the derivative propagation method is propagated to determine the initial 
conditions for transmitted quantum trajectories. As time evolves, trajectories reflected from the potential 
barrier are deleted from the ensemble. This method is applied to a two-dimensional system involving 
either a thin Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. 
Transmission probabilities are in good agreement with the exact results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As an alternative interpretation to nonrelativistic quantum me-
chanics, Bohmian mechanics provides an insightful trajectory de-
scription of quantum phenomena from a hydrodynamic point of 
view [1–3]. For example, it has been shown that the Bohmian 
paths of the electrons for Rydberg atoms are ellipses to a high 
degree of approximation even for arbitrary widths of the wave 
packets [4]. Bohm’s interpretation has been applied to the quan-
tized spherically-symmetric blackhole coupled to a massless scalar 
field [5]. Quantum recurrences for the excited hydrogen atom 
in a magnetic field have been analyzed using Bohmian trajecto-
ries [6]. The geometric phase has been studied within the complex 
quantum Hamilton–Jacobi formalism [7]. The uncertainty princi-
ple in one-dimensional systems has been analyzed using complex 
Bohmian trajectories [8]. Moreover, the trajectory formulation of 
quantum mechanics has been utilized to analyze a broad range 
of physical processes [9,10], such as atom-surface diffraction and 
the dissociation of molecules at metallic surfaces [11,12], quantum 
nonlocality [13], and quantum interference [14,15].

Quantum wave packet dynamics can provide considerable in-
sight into problems of interest in chemical physics. Wave packet 
methods can achieve solutions for far more complicated systems 
than the time independent methods [16,17], and these methods 
have been applied to quantum reactive scattering [18–22]. Vari-
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ous synthetic quantum trajectory approaches have been developed 
to study quantum barrier scattering problems. The quantum trajec-
tory method (QTM) has been introduced as a computational tool to 
solve the time-dependent Schrödinger equation (TDSE) by evolving 
ensembles of quantum trajectories through the integration of the 
hydrodynamic equations on the fly [23–25]. Since then, more robust 
QTMs have been developed and applied to a diverse range of quan-
tum systems with increasing complexity and dimensionality [26].

An important feature of the QTM is that quantum trajecto-
ries follow along with the evolving probability density. Because 
of this property, the quantum trajectory formalism significantly 
reduces the computational effort relative to conventional compu-
tational (fixed grid or basis set) techniques for solving the TDSE. 
However, singularities in the quantum hydrodynamic equations of 
motion may occur in regions of wave interferences, and this re-
sults in numerical breakdown of the trajectory propagation. Thus, 
much effort has been spent on developing methods to deal with 
the node problem. For example, artificial viscosity can be intro-
duced into the equations of motion to moderate the strong quan-
tum force in nodal regions by preventing nodes from fully form-
ing [27–33]. Based on the propagation of node-free functions, the 
covering function method [34,35] and the bipolar decomposition 
approach [36–44] have been utilized to avoid the node formation 
during the trajectory evolution.

In our previous study [45], a straightforward computational 
method was proposed to compute time-dependent reaction proba-
bilities by evolving transmitted quantum trajectories. An ensemble 
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of trajectories is initially launched from the reactant region toward 
the potential barrier. As time progresses, trajectories with negative 
translational velocities are deleted, and this process gradually re-
moves the reflected trajectories from the trajectory ensemble. After 
the wave packet splits into reflected and transmitted parts, the re-
flected trajectories are completely deleted from the ensemble. All 
the remaining trajectories are definitely headed for the transmit-
ted region, and they describe the transmitted subensemble of the 
wave packet. The removal process of reflected trajectories avoids 
numerical instabilities resulting from singularities in the quantum 
potential near nodal regions. This method is specifically suitable 
for thick barrier scattering problems. However, as discussed in the 
previous studies [46–48], solutions depend strongly on the quan-
tum potential for thin barrier scattering problems. Thus, the re-
moval of the reflected trajectories from the ensemble cannot yield 
accurate solutions for thin barriers.

The purpose of this study is to extend our previous com-
putational method for thick barriers to thin barriers. For two-
dimensional barrier scattering problems, a single row of second-
order trajectories computed using the derivative propagation 
method (DPM) [49–52] along the translational coordinate is propa-
gated to determine the appropriate initial conditions for transmit-
ted quantum trajectories. The complex quantum Hamilton–Jacobi 
equation (CQHJE) is solved for the complex action by evolving an 
ensemble of transmitted quantum trajectories. As time evolves, tra-
jectories reflected from the potential barrier are deleted from the 
ensemble. Because the initial trajectory ensemble is sampled from 
the appropriate initial positions, most trajectories correspond to 
the transmitted component of the wave packet. Then, the com-
putational methodology is applied to a two-dimensional system 
involving either a thin Eckart or Gaussian barrier along the reac-
tion coordinate coupled to a harmonic oscillator. In addition, com-
putational results are presented for time-dependent transmission 
probabilities evaluated by the time integration of the probability 
flux using transmitted quantum trajectories.

The organization of the remainder of this study is as follows. In 
Section 2, the potential energy surfaces involving both thin Eckart 
and Gaussian barriers are described and the initial wave packet 
is presented. In Section 3, we employ the arbitrary Lagrangian–
Eulerian (ALE) method to derive the CQHJE along Bohmian tra-
jectories. The moving least squares (MLS) algorithm employed in 
quantum trajectory calculations is described for the calculation 
of the spatial derivatives of the complex action. We propose a 
method to determine the appropriate initial positions for transmit-
ted trajectories. In Section 4, computational results and analysis 
are presented for the transmitted wave packet and transmission 
probabilities. In Section 5, we make some comments and present 
suggestions for further study.

2. Model two-dimensional scattering problem

We consider a Gaussian wave packet scattering from a two-
dimensional potential barrier given by

V (x, y) = V trans(x) + 1

2
k(x)y2, (1)

where x and y denote the translational and vibrational coordi-
nates, respectively. The potential energy surface is either an Eckart 
or a Gaussian barrier of height V 0 centered at x = 0, which 
is coupled to a vibrational mode with a variable force constant 
along x. The translational component of the potential is either 
an Eckart barrier, V trans(x) = V 0 sech2(αx), or a Gaussian bar-
rier, V trans(x) = V 0 exp(−γ x2). The variable force constant k(x) =
k0[1 − σ exp(−λx2)] reaches its minimum value, k0(1 − σ), at the 
barrier maximum (x = 0). The values of the parameters are given 
as V 0 = 0.035, k0 = 0.09, σ = 0.1, and λ = 1. All quantities are 

Fig. 1. (Color online.) Absolute value of the initial wave function (blue solid curve) 
and the thin Eckart (green dashed curve) and Gaussian (red solid curve) barriers 
plotted along the x axis. The wave function has been scaled to have the same height 
as the potential barrier.

given in atomic units throughout this study (h̄ = 1). Two width 
parameters were used: α = 3 for the Eckart barrier and γ = 7 for 
the Gaussian barrier [47,48].

The initial Gaussian wave packet is given by

ψ0(x, y) =
(

4βxβy

π2

)1/4

e[−βx(x−xc)
2−βy y2+ikxx], (2)

where the center of wave packet is located at xc = −3.5 and y = 0. 
The initial wave packet has a momentum h̄kx toward the product 
region, where kx = √

2mE/h̄, m = 2000, and E is the mean trans-
lational energy. The width parameters for the translational and 
vibrational motion are given by βx = 6 and βy = √

mk0/(2h̄). As 
shown in Fig. 1, the Eckart or Gaussian potential energy surface 
described in this study has slightly smaller half-width than the 
initial wave packet. Hence, these two barriers are considered to be 
“thin” barriers.

3. Computational method

3.1. Complex quantum Hamilton–Jacobi equation with Bohmian 
trajectories

The CQHJE-BT method has been proposed to solve the CQHJE 
by evolving an ensemble of Bohmian trajectories (BT) [53,54]. Sub-
stituting the exponential form of the wave function, ψ(�r, t) =
exp[i A(�r, t)/h̄], into the TDSE yields the CQHJE

−∂ A

∂t
= 1

2m
( �∇ A)2 + V (�r) + h̄

2mi
∇2 A, (3)

where A(�r, t) is the complex action. In order to derive the equa-
tions of motion for the complex action along Bohmian trajecto-
ries, we consider a transformation from the Eulerian partial time 
derivative to the total time derivative

d

dt
= ∂

∂t
+

(
d�r
dt

)
· �∇. (4)

In the real-valued quantum trajectory method [26], the grid veloc-
ities are specified according to the guidance equation for Bohmian 
trajectories

d�r
dt

= 1

m
Re

[ �∇ A
]
, (5)

where Re represents the real part. These grids behave as fluid el-
ements which follow the evolving probability density. In the ALE 
representation, the CQHJE in Eq. (3) can be written as

dA

dt
= − 1

2m
( �∇ A)2 − V (�r) − h̄

2mi
∇2 A + 1

m
Re

[ �∇ A
]
· �∇ A. (6)
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