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Chimera states, characterised by coexistence of coherence and incoherence in coupled dynamical systems, 
have been found in various physical systems, such as mechanical oscillator networks and Josephson-
junction arrays. We used recurrence plots to provide graphical representations of recurrent patterns and 
identify chimera states. Moreover, we show that recurrence plots can be used as a diagnostic of chimera 
states and also to identify the chimera collapse.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Network dynamical systems have been studied as models of 
spatiotemporal complexity. Among the spatiotemporal features 
recognised in coupled systems we can find chaos synchronisation 
[1], suppression [2,3], pattern formation [4], and multistability [5].

Dynamical systems may be modelled by coupled ordinary dif-
ferential equations (CODE). A network of coupled differential equa-
tions has a continuous state variable and time, while the space is 
discrete. CODE present various applications to spatially extended 
systems in nonlinear dynamical systems [6]. For instance, pro-
duction and transfer of energy and information in conservative 
systems [7], creation of hyperchaotic attractors in a system of 
coupled Chua circuits [8], and phase synchronisation between col-
lective rhythms of coupled oscillator groups [9]. Moreover, bio-
physical complex systems may be modelled by coupled differential 
equations, such as tumour growth [10,11], and synchronisation of 
bursting neurons [12,13].

Here we focus on dynamical features in CODE such as coher-
ence and incoherence states. When these states coexist the phe-
nomenon is called a chimera state [14]. The network contains a 
coherent and phase locked domain, and an incoherent domain. The 
coexistence of coherence and incoherence was first observed by 
Kuramoto and Battogtokh in a non-locally coupled phase oscilla-
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tors [15]. The existence of chimera states has also been verified in 
networks with symmetrically coupled identical oscillators [16].

Recently, it has been shown that chimera states can be seen 
in experimental studies. Hagerstrom and coworkers showed that 
these states can be realised in experiments using a liquid-crystal 
spatial light modulator [17]. Tinsley and coworkers reported exper-
imental studies in which they observed chimera states in coupled 
Belousov–Zhabotinsky oscillators [18]. In addition, an experimental 
work about chimera states can be found in Ref. [19], where it was
shown that chimeras could emerge coupled mechanical oscillators. 
The experimental setup was realised with metronomes coupled by 
means of adjustable springs. Swing and metronome displacements 
were measured by digital tracking of UV fluorescent spots located 
on the pendula and swings. Through simple mechanical oscillators, 
known as Huygen clock, Kapitaniak and collaborators [20] verified 
the existence of imperfect chimera states in pendula coupled on 
the ring by means of springs and dampers.

Our main result is to show that recurrence quantification anal-
ysis can be used as a diagnostic of chimera states. Recurrence 
analysis is a graphical method designed to locate hidden recurring 
patterns, structural and non-stationarity changes [21,22]. Recur-
rence quantification can be applied to scientific data. Marwan and 
collaborators [23] applied recurrence analysis of time series to a 
marine palaeo-climate record. They identified the subtle changes 
to the climate regime. Recurrence quantification was also consid-
ered by Zbilut and collaborators [24] as a tool for nonlinear ex-
ploration of non-stationary cardiac signals. Ding analysed the com-
bination of three recurrence quantification analysis variables [25]. 
Local complex recurrence plot structures were explored and the 
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results demonstrated that the combination improved nonlinear dy-
namic discriminant analysis.

With regard to recurrence quantification, we have calculated 
recurrence rate, determinism, and laminarity when the system ex-
hibits chimera states. In this work, we have verified that the re-
currence quantification is a good diagnostic for the determination 
of chimera states, as well as for identification of the collapse of a 
chimera state.

This paper is organised as follows. Section 2 introduces the 
model equations. In Section 3, the plot of recurrence is proposed 
as a diagnostic for the identification of chimera states. In the last 
section, we draw the conclusions.

2. Chimera states

We consider a spatially extended system formed by coupled or-
dinary differential equations, in which the space is discrete, while 
the state variable and the time are continuous. The network to be 
treated in this work is a set of Kuramoto oscillators that can ex-
hibit coherent and incoherent behaviours, and it is given by

�̇k(t) = ωk − 1

2R

k+R∑

j=k−R

sin[�k(t) − � j(t) + α], (1)

where the system is composed of N oscillators, each oscillator k
(1 ≤ k ≤ N) with phase �k has an intrinsic natural frequency ωk , 
R is the coupling range, and α is Sakaguchi’s phase lag parameter 
[26]. Several nontrivial synchronisations can be observed for cer-
tain phase lags, such as decreasing synchronisation with increasing 
coupling strength, coexistence of stable incoherence with a par-
tially synchronised state, and coexistence of two stable partially 
synchronised state [27]. In our simulations we consider r = R/N , 
ωk = 0, and the initial conditions are distributed in the interval 
[−π, π ] aiming to obtain chimera states. For ωk = ω, Abrams and 
Strogatz [28] had obtained chimera states for nonlocal coupled 
oscillators. Rosin and collaborators [29] studied a nonlocally net-
work of coupled electronic oscillators that approximately follows a 
Kuramoto-like model. They assumed identical oscillators to observe 
chimera states, namely the same intrinsic natural frequency for all 
oscillators. Laing and collaborators showed that similar patterns 
occur with nearly identical oscillators [30]. In this article, we con-
sidered a finite range coupling (1) that can exhibit chimera states. 
Moreover, this coupling presents a local (next-neighbour) coupling 
when R = 1, and a global (all-to-all) coupling when R = (N/2) − 1
[31].

Fig. 1 displays the scenario of coherence and incoherence states. 
Space–time plots are showed in the left column, and snapshots 
in the right column for phase lag parameter equal to 1.57, 1.47, 
and 1.37. The dynamics is spatially incoherent in Fig. 1a and 1b
for α = 1.57. Decreasing the value of α for 1.47 we can observe 
chimera state (Fig. 1c), where the oscillators with indices from 5
to 30 are in an incoherent state, while the remaining oscillators 
are in a spatially coherent state (Fig. 1d). In Fig. 1e and 1f, for 
α = 1.37, the dynamics is spatially coherent.

3. Recurrence quantification analysis

We have studied the recurrence plots as a diagnostic of chimera 
states. Recurrence plots was introduced by Eckmann and collabo-
rators [32], and it is based on the visualisation of a square matrix. 
The matrix elements correspond to times at which a state recurs. 
In the case of time series, the recurrence plot shows when the 
time series visits the same region of the phase space. In our case, 
instead of time series we use the recurrence plot in spatial series, 
that is given by

RPi, j = �(ε − ‖�i − � j‖), (2)

Fig. 1. (Colour online.) Space–time plots (left) and snapshots of the phases �i (right) 
for r = 0.35, N = 40, phase lag parameter equal to 1.57, 1.47, and 1.37. The chimera 
state in (c) and (d) results from a carefully chosen initial condition. The colour bar 
represents the values of �i .

where �i ∈ �m (i, j = 1, . . . , N), N is the number of states �i , i
and j in a m-dimensional space, ε is a threshold distance, ||.||
stands for the Euclidean norm, and �(.) is the Heaviside function.

Fig. 2 shows recurrence plots for different values of the of 
the phase lag parameter and three different values of recurrence 
thresholds. In Figs. 2a, b, and c, we consider α equal to 1.57 for 
ε = 0.01, 0.1, and 0.3, respectively, the recurrence plot for the three 
cases shows one diagonal without large structures. When α is 
equal to 1.47 for a small ε value (Fig. 2d) there are few structures, 
and only some few sparse points. For an intermediate ε value the 
plot exhibits not only one diagonal line, but also large structures, 
as a result of coherent regions of a chimera state (Fig. 2e). The 
third case of α = 1.47 (Fig. 2f) is for the biggest ε value. We ob-
serve a huge number of structures due the fact that an incoherent 
region is not anymore distinguished from coherent regions if we 
use an overestimated value of recurrence threshold. For α equal to 
1.37 we can only see one grey region, that is independent of the 
ε value used (Figs. 2g, h, and i). The recurrence plot is completely 
grey due to regular spatial behaviour of the coupled oscillators. 
If we are interested in the quantification of the coherent regions 
observed in a chimera state, our results (Fig. 2) show that the in-
termediate value ε = 0.1 is optimal.

The recurrence quantification analysis can provide information 
about the system through the measures of complexity. A recur-
rence occurs whenever two states �i and � j visits roughly the 
same region in a m-dimensional space. For this reason, we have 
studied the chimera states that could be identified by means of the 
measures: recurrence rate (RR), determinism (DET), and laminarity 
(LAM) [33]. The recurrence rate (RR) is the density of recurrence 
point, given by

RR (ε) = 1

N2

N∑

i, j=1

RPi, j (ε) , (3)
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