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The seminal numerical experiment by Bak and Sneppen (BS) is repeated, along with computations 
with replicator models, including a greater amount of features. Both types of models do self-organize, 
and do obey power-law scaling for the size distribution of activity cycles. However species extinction 
within the replicator models interferes with the BS self-organized critical (SOC) activity. Speciation–
extinction dynamics ruins any stationary state which might contain a steady size distribution of activity 
cycles. The BS-type activity appears as a dissimilar phenomenon in comparison to speciation–extinction 
dynamics in the replicator system. No criticality is found from the speciation–extinction dynamics. 
Neither are speciations and extinctions in real biological macroevolution known to contain any diverging 
distributions, or self-organization towards any critical state. Consequently, biological macroevolution 
probably is not a self-organized critical phenomenon.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

At the beginning of the 1900s, people realized the development 
of new species probably does not occur through any gradual evo-
lution process [1,2]. The appearance of species apparently lacks 
continuity [3–6]. Evolution can possibly be described in terms of 
a punctuated equilibrium: the system of life becomes settled into a 
stasis, which then becomes disturbed by species appearances and 
avalanches of extinctions. A dramatic avalanche of extinction is of-
ten followed by rapid recovery [5,7]. In the light of fossil records, 
the evolution of species may appear to be a self-organized criti-
cal phenomenon, the size distribution of extinction events possibly 
following a power law [4,8,5,7,9].

A variety of computational approaches have been used in or-
der to investigate the evolution of life [10–12]. The model by Bak 
and Sneppen [13,14,9], was claimed to self-arrange into a criti-
cal state. System states where observables are scale-free are of-
ten interpreted as critical [15–20]. In other words, critical systems 
show fractal properties, observables being distributed according 
to power-laws [15,16,18,21,17,20]. However, power-law distributed 
observables may appear simply as a result of a random process, 
and do not necessarily imply divergence [22,20,23–25].

Not all critical systems self-organize to their critical point. 
Scale-free behaviour may be found simply by tuning system pa-
rameters towards a critical phase transition. It obviously is dis-
putable whether or not self-organized criticality is a phenomenon 
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characteristic to wide variety of complex systems in Nature [26,
15–17,19,15,9,20].

One of the most functional ways of modeling ecological sys-
tems is the use of replicator equations. Replicators refer to systems 
where a configuration of “strategies” or “species” contributes to 
the “fitness” or “payoff” of any particular strategy. The “fitness” or 
“payoff” in turn contributes to the abundance of each “strategy” 
or “species”. An important contrast to the catalytic network model 
[27–33] is that the fitness regulates abundance in relation to the 
existing abundance. In other words, within the replicator model, 
parents of the same species are needed.

Early attempts to directly apply random replicator models in 
investigations into the evolution of life have either not produced 
large, complex ecosystems, or have not resulted in large, recover-
ing avalanches of extinctions, depending on the parameters used 
[30,34–37]. Recently, a variety of parameters have been introduced 
in random replicator models, resulting as more features in the cor-
responding systems [38]. However, systems with fluctuations of a 
wide variety of sizes can only be produced by tuning the param-
eters [38]. The replicator ecosystems with speciation and inheri-
tance do not self-arrange to any critical state.

There is a discrepancy between the Bak–Sneppen evolution 
model and the replicator models, as the latter do not show any 
sign of self-organized criticality. The discrepancy may be related 
to a question of wider applicability. It has been argued that not 
only evolution of a system of species in nature is a self-organized 
critical process [4,8,5,7,9], but that many phenomena in the com-
plex Nature, living as well as non-living, are dominated by con-
tingency and show self-organized critical behavior with power-law 
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distributed observables [5]. We hope the present study with evo-
lution models will give some hint whether Nature, in large, essen-
tially consists of systems showing self-organized critical features 
[39,7,40].

2. Bak–Sneppen model

Key features of the Bak–Sneppen model are extremal dynamics 
on the one hand, and spatial correlations on the other [13,21]. The 
former arises from Boltzmann statistics: species with the lowest 
fitness barrier are assumed to mutate first. The latter constitutes a 
simplified description of species interaction.

Within the BS-model, any species has one property: randomly 
assigned fitness. Species are arranged on a one-dimensional array 
with periodic boundary conditions. Extremal dynamics activates 
the species with the lowest fitness. That species is assigned an-
other random fitness value. Spatial correlations are introduced by 
simultaneously assigning new fitness values for the two nearest 
neighbors of the triggering species. Consequently, any mutation 
event changes the fitness of three species.

Along with increasing number of mutation cycles, such a sys-
tem arranges to a stationary state where, in the case of a system 
with many species, the lowest fitness never appears to exceed a 
particular threshold value. In other words, the fitness space be-
comes divided in two phases, an active phase and an inert phase. 
Species with fitness in the active phase may trigger mutations, 
whereas species with fitness in the inert phase do not. The latter 
however may mutate in events triggered by one of their nearest 
neighbors.

Within the BS-model, an activity cycle starts when the lowest 
fitness falls below another threshold value, a cycle threshold taken 
somewhat below the phase boundary. The cycle terminates when 
there no longer is any species with fitness below the cycle thresh-
old, the size of the cycle being the number of newly assigned 
fitness values within the cycle.

The above indicates that in the stationary state, results are 
likely to depend on the selection of the cycle threshold. This ap-
pears problematical. However, it has been shown that once model 
self-organizes to the phase boundary, it is critical at the phase 
boundary (“self-organizing threshold”) [41,42]. Criticality can read-
ily be understood in terms of the probability of the smallest fitness 
to gain a particular value vanishing at the phase boundary. Conse-
quently, the average activity cycle size diverges.

It also appears that there is a hierarchy of activity cycle sizes 
(“avalanches”) as a function of cycle threshold f0 distance from the 
self-organizing threshold fc , and average activity cycle size obeys 
a scaling relation [41,42]

〈S〉 ∝ ( fc − f0)
−γ . (1)

In one dimension, the scaling exponent γ appears to be in the 
order of 2.7, and in two dimensions in the order of 1.7 [41,43,
42]. The d-dimensional BS-system may belong to the same uni-
versality class with d + 1 directed percolation, which would imply 
scaling exponents approaching unity with increasing dimensional-
ity [43–45].

We first repeated the one-dimensional BS-experiment with a 
system of 300 species. Extremal dynamics did organize the fitness 
space in two phases, and the probability of the smallest fitness get-
ting a particular value vanished at the phase boundary. Below the 
phase boundary, the average cycle size did obey the scaling law (1), 
with exponent γ in the order of 2.61 instead of 2.70 [cf. [43,42]], 
possibly due to the finite size of the present experiment.

3. One-dimensional replicator model

The one-dimensional replicator model is here designed to re-
semble the Bak–Sneppen model. Instead of designing any speci-
ation procedure, a constant number of species is introduced, the 
initial abundance of any species corresponding to the inverse of 
the number of species. Random interaction coefficients are drawn 
from a Gaussian distribution of zero mean and unit variance, the 
interaction coefficients constituting a square matrix of linear di-
mension corresponding to the number of species. The diagonal of 
the matrix is then replaced by self-interaction coefficients, drawn 
from a Gaussian with predetermined mean value and 20% standard 
deviation [cf. [38]].

The interaction matrix produced according to the procedure 
above is fully occupied, and any species interacts with all other 
species. In order to compose a one-dimensional system, any 
species shall interact only with its neighbors within a one-
dimensional array. This is implemented by applying vacancies in 
the interaction matrix. A nearest-neighbor interaction is produced 
by leaving 3n interaction coefficients nonvacant, with periodic 
boundary conditions, n corresponding to the linear size of the sys-
tem. Thus there are n self-interaction coefficients and 2n nearest-
neighbor interaction coefficients

The sparse interaction matrix produced this way corresponds to 
the asymmetric case. In other words, nondiagonal interaction coef-
ficients Zij and Z ji have zero covariance. In order to introduce ei-
ther symmetry or antisymmetry, some amount of covariance must 
be induced. This was implemented by replacing Zij and Z ji , for 
i < j, with

Kij = Zij

K ji = �Zij +
√

1 − �2 Z ji, (2)

where � refers to a symmetry parameter with values between 
unity and negative unity, the value zero corresponding to the 
asymmetric interactions. Correspondingly, Kij and K ji refer to non-
diagonal interaction coefficients with possibly some covariance.

A fitness vector is then produced as the product of the interac-
tion matrix and the configuration vector x, or equivalently

Fi = Kijx j∑
x

. (3)

Any species abundance is then assumed to change according to the 
replicator equation(

�x

x

)
i
= Fi − 〈F 〉 = Fi − x · F∑

x
. (4)

Equations (3) and (4) are applied repeatedly until an equilibrium 
species configuration is found.

Extremal dynamics is then applied to the one-dimensional 
replicator system by mutating the species with lowest fitness. Mu-
tation of the species corresponds to reassigning the interaction 
coefficients where the mutating species is involved. This immedi-
ately changes the fitnesses of the mutating species and its nearest 
neighbors according to Eq. (3). Further, the abundances of all the 
species are changed according to Eq. (4). Again, Eqs. (3) and (4) are 
applied repeatedly until equilibrium species abundances are found.

Species with abundance vanishing below a small threshold 
value in the vicinity of zero are considered extinct and removed 
from the system. This must be done in order to avoid a fitness 
barrier to be formed by clusters of at least three species with zero 
abundances at zero fitness, according to Eq. (3). Such a barrier 
would ruin any extremal dynamics.

Extremal dynamics will possibly make the system to self-
organize. The eventual self-organizing threshold fc , in terms of 
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