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The VCA ground state of the 2D Hubbard model is examined for possible phase separation under hole 
doping manifested by spatial inhomogeneities of coexisting different electron densities at equilibrium. 
Phase separation is accompanied by spectral weight loss and first Brillouin zone boundary deformation. 
Such an instability is observed in square structures and it is absent in honeycomb lattices. To our 
knowledge, no previous publications have revealed relationship between a Fermi surface instability and 
phase separation. Our VCA calculations provide strong support for this spontaneous instability, driven 
by electron correlations in specific lattice geometries, proposed in our earlier publications using exact 
quantum cluster calculations.
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1. Introduction

One of the most challenging problems in condensed matter 
physics has to do with understanding the physics of strongly cor-
related materials. Such electronic materials, found (for example) in 
certain oxides and selenides, give rise to a broad range of differ-
ent phenomena and display complex phase diagrams. Electronic 
inhomogeneities originating from strong correlations have been 
discovered in the cuprates and iron-based superconducting mate-
rials. These spatial inhomogeneities, also often called phase sepa-
ration (PS), are present as nanoscale spatial variations of electron 
densities in the form of stripes [1], “checkerboard” [2] and granu-
lar structures [3,4]. Theoretical investigations of strongly correlated 
materials are based on numerical calculations of interacting elec-
tron lattice models and most specifically are focused on the Hub-
bard model [5]. Recently, various numerical methods have been 
employed to provide insights into the many-body physics of the 
model, such as exact diagonalization (ED), quantum Monte Carlo 
(QMC) [6], dynamical mean field theory (DMFT) [7], dynamical 
cluster approach (DCA) [8] and variational cluster approximation 
(VCA) [9].
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The importance of electronic phase separations driven by elec-
tron correlations was realized in the Hubbard model by Viss-
cher [10] in the 1970s and was systematically studied at the strong 
interaction limit later using the t– J model [11,12]. Our recent 
many-body calculations in different bipartite and non-bipartite 
clusters on phase separation in the Hubbard model are based 
on exact diagonalization [13–17]. These results at some critical 
Coulomb interactions display a level crossing instabilities similar 
to phase separation transitions seen at various doping levels even 
close to the optimal doping [1–3]. However, in spite of high ac-
curacy cluster calculations always are inevitably tied to some un-
certainties due to size and edge effects. Macridin et al. [18,19]
proposed a thermodynamical description of electronic phase tran-
sition, and the theory further points to the existence of a quan-
tum critical point which closely resembles the level crossing point 
observed near phase separation instability at the cluster level in 
Refs. [13–15]. Aichhorn et al. [20,21] discussed the coexistence of 
the global antiferromagnetic and superconducting long-range or-
ders in variational cluster calculations. However, STM experiments 
show strong evidence that at very low temperature, electronic 
states on BSCCO are inhomogeneously distributed and there is 
no sign of any long-range ordering [3]. Therefore, here we exclu-
sively focus on direct effects of inhomogeneities in the 2D Hub-
bard model at zero temperature using VCA method as an accurate 
variational tool to incorporate a cluster–cluster coupling in two-
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dimensional (2D) Hubbard lattice without any assumption on pos-
sible long-range ordering. Recent discoveries suggest that phase 
separation is likely to occur in the vicinity of a metal–insulator 
transition (MIT) [22–24]. In contrast to one-dimensional systems, 
the 2D Hubbard model in both square and honeycomb lattices at 
half-filling is expected to exhibit a Mott–Hubbard MIT at finite on-
site Coulomb interactions U in the paramagnetic phase at both 
zero and finite temperature [25–30]. In general, this transition at 
a finite U value might be an intrinsic property of the 2D Hub-
bard lattice [30]. Historically, there have been contradictory claims 
with regard to phase separation in the 2D Hubbard model. In early 
QMC work [31,32], it was concluded that there was no sign of 
phase separation in the range of the parameters studied. Certain 
analytical estimates on the 2D Hubbard model by Su [33] appear 
to suggest that no phase separation exists at finite temperature. 
Some of the limitations in these approaches may have led to such 
conclusions. However, more recent work, using the DCA [18], has 
captured a phase separated region consisting of coexisting strongly 
correlated metallic and Mott insulating phases.

In this work, we investigate possible phase separation in both 
square and honeycomb lattices from half-filling to optimal doping 
at zero temperature following the VCA procedure. This method is 
known to be accurate when electron correlations are local, which 
is quite likely in the case of high temperature superconductors in 
the absence of long-range order. We find strong evidence of phase 
separation (co-existence of different phases) for the square lat-
tice in the underdoped region. However, no phase separation is 
found in the honeycomb lattice within a similar region of dop-
ing and Coulomb interactions. Some of the important outputs of 
the method, such as the one-particle excitation spectral functions 
and spin susceptibilities in the relevant doping region, are used to 
identify a possible geometry-related mechanism for phase separa-
tion. The rest of the paper is organized as follows: In the following 
section, we formulate (in a nutshell) the principles of exact quan-
tum cluster calculations and present the basic methodology of the 
variational cluster approximation. In Section 3, we study the MIT 
at half-filling and phase separation effects away from half-filling 
in square and honeycomb structures to underline their differences 
observed already at the cluster level. The concluding remarks are 
given in Section 4.

2. Method

2.1. Hamiltonian

We use one-band Hubbard Hamiltonian Ĥ :

Ĥ =
∑

〈r,r′〉σ
(−tĉ+

rσ ĉr′σ + H .c.) + U
∑

r

n̂r↑n̂r↓, (1)

where ĉrσ is the annihilation operator for electrons at site r with 
spin projection σ and U is the on-site screened Coulomb repul-
sion. 

〈
r, r′〉 denotes summation over the nearest neighbors. The 

coupling parameter t is the transfer integral between the nearest 
neighbors. All the energies reported here are measured in units 
of t > 0. We focus here on the case with hole doping, when the 
electron number per atomic site (n = N/Na), i.e., electron density 
n < 1.

2.2. Quantum cluster calculations

The thermodynamic and ground state properties of the Hubbard 
model with a large number of electrons and lattice sites cannot be 
calculated by exact diagonalization technique. However, full diago-
nalization is still possible within relatively small Hubbard clusters 
such as squares, 8-site 2 × 4 ladders, two-dimensional Betts cells 
and pyramids [34,35].

Fig. 1. The charge energy gap variation as a function of on-site interaction strength 
U in the 6-site honeycomb cluster. There is no sign of phase separation instability 
driven by U , since the gap at one hole of half-filling opens at infinitesimal U and 
increases monotonically.

The problem of a quantum gas of interacting many electrons 
in independent clusters is exactly solvable in the ground state and 
at finite temperatures [13–17]. The canonical and grand canonical 
ensembles in equilibrium display thermodynamic phase diagrams 
and the tendency to phase separation through responses of the 
system to changes of electron concentration and magnetic field. 
For instance, the charge excitation gap, �c(U ) = E(N + 1) + E(N −
1) − 2E(N), is calculated using the lowest canonical energies E(N)

with the number of electrons N in a particular doping region close 
to the half-filling. The positive gap region at relatively large U and 
one hole off half-filling describes a Mott–Hubbard insulator. The 
negative excitation gap �c < 0 earlier found in various 2 × 2 and 
2 × 4 square geometries displays an electron charge instability at 
weak and moderate U values. The nodes of the charge gap, i.e., U
values at which �c(U ) = 0, determine the critical parameter Uc for 
possible level crossing instabilities. This implies a redistribution of 
electron density and phase (charge) separation (i.e., segregation) of 
the clusters into hole-rich and hole-poor regions for different num-
bers of electrons per cluster. The inhomogeneities favored by the 
negative gaps are essential for generating the spontaneous elec-
tron charge separation. Here we show the contrasting behavior of 
a charge energy gap versus U in bipartite honeycomb geometry at 
one hole off half-filling. In Fig. 1, the gap opens at infinitesimal U
and increases with U monotonically without charge phase separa-
tion by avoiding level crossings. This positive charge gap observed 
at the cluster level is crucial for stabilization of homogeneous elec-
tron density in the large honeycomb lattice. Our VCA calculations 
in honeycomb lattice at infinitesimal U in close vicinity of half-
filling confirm such insulating behavior in Fig. 1 at one hole off 
half-filling as U → 0.

One can extrapolate the results of many-body cluster calcula-
tions obtained for small clusters to larger two-dimensional lattices 
and consider the “concentrated” two-dimensional Hubbard lattice 
modeled as a checkerboard lattice structure with embedded arrays 
of such disconnected unit cells, which do not interact directly, but 
form a grand canonical ensemble in thermodynamic equilibrium. 
In inhomogeneous concentrated systems, this description in ther-
modynamic equilibrium becomes quite accurate for suitable values 
of parameters since the lattice can be broken up into periodic ar-
rays of weakly coupled clusters. In the VCA, the cluster–cluster 
interaction is usually added through the coupling between the unit 
cells comparable to the energy transfer scale t within an individual 
cluster. The VCA provides accurate results for cluster sizes not ac-
cessible to full diagonalization. Thus, exact predictions given by a 
grand canonical ensemble of clusters in various geometries can be 
tested using the VCA results in the “concentrated” 2D Hubbard lat-
tice. Below we compare the geometry dependence in square and 
honeycomb bipartite lattices using the disconnected square and 
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