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We established a calculation model of the conductivity of multilayer graphene based on Boltzmann 
transport equation and 2D electron gas theory. Numerical simulations show that the conductivities of 
few-layer graphene and graphene nanosheets are reduced when thickness is increased. The reduction 
rate decreases for micron-range thicknesses and remains constant thereafter. Moreover, the conductivity 
increases with the increase in temperature, in which the increase rate declines as temperature increases. 
Higher thickness exhibits a more obvious temperature effect on conductivity. Such effect also increases 
with the increase in temperature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Single-layer graphene (SLG), few-layer graphene (FLG), graphene 
nanosheets (GNs), graphene nanoribbons (GNRs), and carbon nan-
otubes have attracted considerable interest because of their unique 
electrical, thermal, optical, and mechanical properties [1–6]. FLG 
and GNs are widely applied in nanoelectronics [7–9], superca-
pacitors [10–12], transparent conducting thin films [13–15], solar 
energy fuel cells [16–18], biochemical analysis and detection [19,
20], and electromagnetic interference shielding and microwave ab-
sorption [21,22].

In particular, the conductivities of SLG and multilayer graphene 
have attracted research interest. Novoselov et al. [23] found that 
the electrical resistivity of graphene is approximately 1.0 μ� cm, 
which is slightly lower than that of silver (1.5 μ� cm). Experi-
mental data [1,23–25] from 2005 to 2007 show that the electron 
mobility of graphene ranges from 3 ×103 to 2.7 ×104 cm2 V−1 s−1, 
which is lower than the forecast because of various impurities 
and defects in the samples. Bolotin et al. [26,27] demonstrated 
that the highest migration rate among five graphene samples is 
2.3 × 105 cm2 V−1 s−1. Geim et al. [28] revealed that the mobil-
ity of graphene is more than 2.0 × 105 cm2 V−1 s−1, which almost 
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remains constant at different temperatures. Romanenko et al. [29]
used multilayer graphene with graphite flake-like structures (layer 
number, 5 to 60; thickness, 2 nm to 18 nm) and found that their 
electrical conductivity increases with the increase in temperature, 
implying a negative temperature coefficient of resistance. Boland et 
al. [30] demonstrated that the electrical conductivity of GNRs de-
creases with increasing thickness; a similar behavior is observed 
for graphite. Rouhi et al. [5] found that the electrical resistiv-
ity of suspended FLG is approximately 3.35 μ�/cm. Hwang and 
Das Sarma [31] theoretically calculated the temperature-dependent 
electrical conductivity of graphene using the Boltzmann transport 
equation and the mechanism of phonon scattering. They showed 
that the temperature coefficient of resistance increases with the in-
crease in temperature from 5 to 500 K. The calculations of Hwang 
and Das Sarma [32] indicated that graphene exhibits positive and 
negative temperature coefficients of resistance at temperatures less 
than and greater than the Fermi temperature, respectively. Pere-
beinos and Avouris [33] simultaneously considered the scattering 
of phonons, surface polariton phonons, and charged impurities; 
they found that the mobility of SLG that is grown on the insulating 
substrate slightly decreases with increasing temperature. Although 
high conductivity of SLG can be explained by Boltzmann transport 
theory, this theory fails to explain the two problems in FLG and 
GNs. First, the reduction of the mobility of multilayer graphene 
with increasing temperature; the positive temperature coefficient 
of resistance results in electronic and optical phonon scattering, 
which is not observed in [29]. Second, the reduction in graphene 
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conductivity with increasing thickness of the graphene cannot be 
explained by this theory [30].

In this study, two types of directional transmission channels 
of carriers were considered using Boltzmann transport theory and 
2D electron gas model. The channels were analyzed based on the 
differences in the electric field distribution of carbon ion layers 
in SLG, FLG (2 to 9 layers) and GNs (>10 layers; ∼3 mm to 
100 nm thickness). The surface channels were only observed dur-
ing electron–electron scattering, and the expression of relaxation 
time was provided. The interlayer channels were observed during 
electron–electron and electron–phonon scattering; the former was 
stronger than the latter. The electrical conductivities of SLG, FLG, 
GNs, and graphite pieces were numerically computed using Boltz-
mann transport theory. Results show that the conductivities of FLG 
and GNs decrease with increasing thickness, and the conductivities 
remained constant for micron-range thickness. The negative tem-
perature coefficient of resistance increases with temperature for 
graphite sheet.

2. Electronic transport in 2D plane

2.1. Electrical conductivity of 2D electron gas

Graphene is a 2D material that comprises a single layer of car-
bon atoms and exhibits a lattice structure that resembles a hexag-
onal honeycomb. In a flat hexagonal lattice, the sp2 hybridization 
of three valence electrons of each carbon and three nearest neigh-
bor carbon atoms forms a stable σ bond (bond length, 0.142 nm). 
The p orbital electrons that remain in each carbon form π bonds; 
π electrons freely move to yield a 2D electron gas system. At 
time t , the electronic number within dxdy and dkxdky is given 
as follows:

(x, y;kx,ky)dxdydkxdky (1)

After time dt , the incremental number of electrons in the same 
cell area and momentum interval is d f dxdydkxdky [Eq. (2)]:

d f

dt
= ∂ f

∂t
+ ∂ f

∂x

∂x

∂t
+ ∂ f

∂ y

∂ y

∂t
+ ∂ f

∂kx

∂kx

∂t
+ ∂ f

∂ky

∂ky

∂t

= ∂ f

∂t
+ vx

∂x

∂t
+ v y

∂ y

∂t
+ Fx

∂ f

�∂kx
+ F y

∂ f

�∂ky
(2)

where Fx and F y are the x- and y-components of the external 
field, respectively, and vx and v y are the corresponding x- and 
y-components of the electronic velocity. The distribution state of 
the electrons changes from f to the original f0 after relaxation 
time τ . Thus, from Eq. (2), Boltzmann transport equation can be 
written as follows:
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where f0 is the Fermi function. The distribution function is applied 
by a stable and uniform external electric field E x along the x-axis; 
Eq. (3) is simplified as follows:

−eEx · (vx + v y)
∂ f

∂ε
= − f − f0

τ
(4)

Given that the external electric field is far less than the atomic 
internal counterpart, f and f0 are nearly similar [Eq. (4)].

f = f0 + τeEx · (vx + v y)
∂ f
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(5)

The electronic state number upon considering the relativistic ef-
fects 2D plane and energy range ε−ε+ dε is presented by Eq. (6):

D(ε)dε = 4π A

v2h2
εdε (6)

where A is the area of the 2D electronic plane. The current density 
is given as follows:
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where d is the thickness of electronic plane. Based on Ohm’s law 
and polynomial approximation of Fermi integral, the conductivity 
of a 2D electron gas is obtained using Eq. (7).
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where τ is determined by the mechanism of electron scattering.

2.2. Mechanism of electron scattering in 2D plane

Under electric field E , the free electrons (π electrons) move 
directionally in graphene [Fig. 1(a)]. Simultaneously, these elec-
trons are scattered by lattices (phonons) and other free electrons 
[Figs. 1(b) and 1(c)].

Suppose that da and de are diameters of C atoms (C ions) and 
electrons, respectively, ve and va are the respective electronic and 
atomic speeds, and 2θ is the intersection angle between the direc-
tions of electronic movement and scattering. Furthermore, d12 =
(da + de)/2 is the approximate diameter of the carbon atom. This 
parameter should be centered in the lattice. The electron collision 
must be centered on the circumference. At time dt , the electrons 
scattered along the n direction and confined in the parallelogram 
at the bottom and top portions are d12dθ and (ve − va) cos θdt , re-
spectively; thus, the area is d12(ve − va) cos θdθdt . Therefore, the 
probability of electrons scattered by the phonon is given as fol-
lows:

1
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= 1
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¨
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where fa and fe respectively represent the speed distributions of 
the phonons and electrons in the 2D plane. Given a phonon at the 
origin of the geocentric coordinate system, Eq. (9) can be expressed 
as follows:
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where ma and m0 are the respective mass of atoms and electrons, 
ve is the average of electronic speeds, and nas is the atomic con-
centration. The scattering probability between the electrons is ob-
tained from Eq. (10). Considering the inter-electron Coulomb force 
[34,35], the scattering radius for two electrons that approach at a 
relative velocity [Fig. 1(c)] is presented by Eq. (11):
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where ver is the relative velocity of the unified electrons and m∗
e

is the effective mass of electron. Based on Eqs. (9) and (11), the 
inter-carrier scattering is determined as follows:
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where nes is the electron concentration.
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