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In this paper vertex conditions for the differential operator of fourth derivative on the simplest metric 
graph – the Y -graph, – are discussed. In order to make the operator symmetric one needs to impose 
extra conditions on the limit values of functions and their derivatives at the central vertex. It is shown 
that such conditions corresponding to the free movement of beams depend on the angles between the 
beams in the equilibrium position.

© 2015 Elsevier B.V. All rights reserved.

1. Motivation

Quantum graphs – differential operators on metric graphs – 
form a well-established formalism to model wave propagation in 
thin channels and other physical systems where interesting phe-
nomena occur in a neighborhood of a system of low-dimensional 
manifolds [1,12,21]. It appears that ordinary differential equations 
on graph edges coupled by certain vertex conditions give a rather 
good approximation of wave propagation in thin domains. Inten-
sive research is devoted to understanding which particular vertex 
conditions give the best approximation. The set of all possible ver-
tex conditions can be described using different mathematical lan-
guages [15,10,11,14,16,2]. One may expect that the geometry (first 
of all the angles between the edges) of the vertex should be re-
flected in these conditions. To study this question it is enough to 
consider the star graph and in this article we are going to restrict 
our consideration to the star graph � formed by 3 semi-infinite 
edges [x j, ∞), j = 1, 2, 3. There is just one vertex V = {x1, x2, x3}.

In physics it is common to use quadratic forms instead of op-
erators, since often it is easier to check that a quadratic (sesquilin-
ear) form is semi-bounded and closed instead of proving that an 
operator is self-adjoint. The quadratic form corresponding to the 
Laplacian on � is given by the integral of |u′(x)|2 plus possibly an 
additional term coming from the vertex. This additional term de-
scribes the interaction between the waves at the vertex and should 
be absent if one is looking for conditions corresponding to the free 
motion. We end up with the quadratic form
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Q [u, v] =
∫
�

u′(x)v ′(x)dx =
3∑

j=1

∞∫
x j

u′(x)v ′(x)dx. (1)

This form is positive and closed on the set of functions from 
the Sobolev space W 1

2 (� \ V ) = ⊕3
j=1 W 1

2 (x j, ∞). If no further 
conditions at the vertex are assumed, then the corresponding 
self-adjoint operator is the Laplace operator LII = − d2

dx2 defined 
on the functions from W 2

2 (� \ V ) satisfying Neumann conditions 
u′(x j) = 0. The three edges are then independent of each other. 
Therefore the only way to introduce coupling between the edges 
is through restricting the domain of the quadratic form by certain 
conditions on the limiting values of the function at the vertex (to 
ensure that the operator is local). Since the functions from W 1

2
are continuous, but their derivatives are not necessarily continu-
ous, these vertex conditions may involve only the values of the 
function at the end points u(x j). Here and in what follows we use 
the limiting values of functions and their derivatives from inside 
the edges defined as

u(n)(x j) := lim
ε↘0

u(n)(x j + ε). (2)

If all endpoints are equivalent, then it is natural to impose the 
continuity condition

u(x1) = u(x2) = u(x3). (3)

The self-adjoint operator corresponding to the quadratic form (1)
defined on functions from W 1

2 (� \ V ) satisfying (3) is precisely 
the Laplace operator LII with the domain given by the standard 
conditions
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u is continuous at the vertex V ;∑
x j∈V

u′(x j) = 0. (4)

Another possibility to restrict the quadratic form is to introduce 
Dirichlet conditions

u(x j) = 0, x j ∈ V (5)

instead of (3). The corresponding operator is self-adjoint but there 
is no coupling between the edges.

We have seen that the derived vertex conditions do not contain 
any information about the geometry of the junction, especially the 
angles between the edges are not reflected. In what follows we 
turn to problems of elasticity and will show how the geometry of 
the junction may be reflected in vertex conditions.

2. Elasticity

Elasticity problems are usually described by fourth order differ-
ential operators [19]. Consider therefore the differential operator 
LIV := d4

dx4 first on the interval [x0, ∞) and later on the graph �. 
The corresponding wave equation

∂4

∂x4
u = − ∂2

∂t2
u

can be used to describe the dynamics of small deflection of beams. 
Thus the operator LIV in L2(x0, ∞) corresponds to a single long 
beam. The operator can be made self-adjoint by choosing appro-
priate boundary conditions at the origin. For example, in the case 
when the end point of the beam is clamped the corresponding 
self-adjoint boundary condition is

u(x0) = u′(x0) = 0.

And in the case when the end point is free we can impose the 
following condition to make the operator self-adjoint

u′′(x0) = u′′′(x0) = 0. (6)

One can describe all possible boundary conditions at the end 
point x0 by the following families of matching conditions (see 
[23]):

0) u(x0) = u′(x0) = 0,

i) u(x0) = 0, u′′(x0) = γ1u′(x0),

ii) u′(x0) = γ3u(x0), −u′′′(x0) + γ3u′′(x0) = γ2u(x0),

iii)

{
u′′(x0) = γ3u(x0) + γ1u′(x0)

u′′′(x0) = −γ2u(x0) − γ3u′(x0),

where γ1, γ2 are arbitrary real numbers and γ3 is an arbitrary 
complex number. This formalism can be carried out to the case 
where several beams are connected together at one junction. To 
describe all possible vertex conditions leading to self-adjoint op-
erators one may use either von Neumann theory [22], boundary 
triples [8] or scattering matrix approach [12–14]. Our goal here is 
not to carry out such description, but to derive conditions corre-
sponding to the free dynamics of beams.

Consider first the case where just two beams are connected. As-
sume that the equilibrium position corresponds to the case when 
the two beams form a line. Such beams may be parameterized as 
(−∞, x0], and [x0, ∞). The quadratic form corresponding to the 
free motion is given by

Q [u, v] =
∞∫

−∞
u′′(x)v ′′(x)dx

=
x0∫

−∞
u′′(x)v ′′(x)dx +

+∞∫
x0

u′′(x)v ′′(x)dx. (7)

As before it is natural to assume that u is continuous at x0, other-
wise the beams do not touch each other:

u(x0 − 0) = u(x0 + 0). (8)

The beams are free, no external force is applied if the graph of u(x)
does not form any angle at x0, i.e. the first derivative is continuous:

u′(x0 − 0) = u′(x0 + 0). (9)

The quadratic form on the domain of functions from W 2
2 (R \ x0)

satisfying conditions (8) and (9) is semi-bounded and closed. 
Let us calculate the self-adjoint operator corresponding to this 
quadratic form. First of all one needs to determine the set of all 
u, for which the quadratic form Q [u, v] is a bounded linear func-
tional with respect to v . Taking v from C∞

0 (R \ x0) we see that the 
second derivative of the function u′′ should be from L2,loc(R \ x0). 
In other words u ∈ W 4

2 (R \ x0) and one may carry out integration 
by parts:

Q [u, v] =
x0∫

−∞
u(iv)(x)v(x)dx +

+∞∫
x0

u(iv)(x)v(x)dx

− u′′(x0 + 0)v ′(x0 + 0) + u′′′(x0 + 0)v(x0 + 0)

+ u′′(x0 − 0)v ′(x0 − 0) − u′′′(x0 − 0)v(x0 − 0)

=
x0∫

−∞
u(iv)(x)v(x)dx +

+∞∫
x0

u(iv)(x)v(x)dx

− (u′′(x0 + 0) − u′′(x0 − 0))v ′(x0)

+ (u′′′(x0 + 0) − u′′′(x0 − 0))v(x0), (10)

where on the last step we used that the function v satisfies (8)
and (9). The integral terms are bounded linear functionals with 
respect to v , while the functionals

v �→ v(x0) and v �→ v ′(x0)

are not. It follows that the coefficients in front of these functionals 
must be equal to zero{

u′′(x0 − 0) = u′′(x0 + 0),

u′′′(x0 − 0) = u′′′(x0 + 0).
(11)

The operator d4

dx4 defined on the set of functions from W 4
2 (R \ x0)

satisfying matching conditions (8), (9) and (11) is the self-adjoint 
operator corresponding to the quadratic form. As in the case of 
Laplacian the vertex x0 can be removed and the two edges may be 
substituted by one edge (−∞, ∞).

Our goal is to understand how the matching conditions (8), (9), 
(11) can be generalized to the case when several beams are joined 
at one vertex, having different angles in-between in the equilib-
rium position. The function u describing small deflections of the 
system from the equilibrium can be considered as a function on 
the graph � made up of three half-lines connected at the ver-
tex V and making angles α, β and γ , none of which is equal 
to 0 or π (see Fig. 1). The special cases when one of the an-
gles is equal to 0 or π is considered in Section 4. The Hilbert 
space is L2(�) := ⊕3

i=1 L2[x j, ∞) and we are interested in vertex 
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