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Transport property of graphene electron in two kinds of realistic magnetic barriers is studied. For 
symmetric magnetic barriers with perpendicular magnetization, transmission is symmetric in (E, ky)

space. There exists a (2n − 1)-fold resonance splitting rule for n-barrier structure due to the splitting 
of energy levels. For antisymmetric magnetic barriers with parallel magnetization, transmission is 
asymmetric in (E, ky) space, and the Fabry–Pérot resonance is observed. The smoothness of magnetic 
barrier weakens the resonant behavior of transmission. The conductance resonance can be controlled by 
the thickness of strips, the distance between strips and graphene, and the smooth electric barrier.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Electron motion in a conventional semiconductor two-dimen-
sional electron gas subjected to an inhomogeneous magnetic field 
has caused tremendous interest, due to the advance in the mi-
crofabrication technique and its potential applications to electronic 
devices [1–10]. Such systems can be experimentally realized by 
the deposition of a heterostructure in an inhomogeneous mag-
netic field [1–3]. Theoretical studies on electron tunneling showed 
that magnetic barriers possess wave-vector filtering property and 
the energy spectrum of magnetic superlattice consists of magnetic 
minibands [2]. The oscillatory magnetoresistance resulting from a 
commensurability effect between the classical cyclotron diameter 
and the period of magnetic modulation has also been observed [3]. 
On the aspect of spin-dependent transmission, various schemes 
have been proposed for spin polarization and spin filtering in the 
magnetic modulated nanostructures [7,8].

Recently, the inhomogeneous magnetic fields have been sug-
gested to confine massless Dirac electrons [11–28], providing an 
efficient tool to manipulate electrons in graphene. Graphene ex-
hibits fascinating characteristics and various potential applications, 
due to its honeycomb lattice structure. The electrons in graphene 
are described as massless and chiral relativistic fermions, governed 
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by an effective Dirac equation with linear energy dispersion. Ex-
perimentally, it is believed that the same technologies for semi-
conductor can be used to create similar magnetic structures in 
graphene [11]. Theoretically, the transport, band structure, and 
magnetic edge states of Dirac electrons were researched in vari-
ous magnetic structures involving single barrier [11–14], several 
barriers [15–21], and quantum dots [22–24]. It is found that the 
Fermi velocity at Dirac points is isotropically renormalized in mag-
netic superlattices with rectangular barriers [15]. The direction-
dependent tunneling and quantum bound states have been dis-
cussed in graphene-based δ-function magnetic barriers [16]. The 
low-energy electronic structure of graphene under an inhomoge-
neous magnetic field could be mapped into that of graphene under 
an electric field or vice versa [29]. The results manifest that the ef-
fect of magnetic field on Dirac electrons in graphene is different 
from that on conventional electrons, especially for the Klein tun-
neling.

In these theoretical studies, one often uses a δ-function bar-
rier or a rectangular barrier to model the spatial dependence of 
a magnetic field for simplicity. However, it is obvious that in ac-
tual realizations, some form of smoothness of the magnetic field 
will be present inevitably. Due to the intricate relationship be-
tween the magnetic field and electronic properties, it is relevant 
to investigate the effect of smoothness of the magnetic field. It 
has been demonstrated that the smoothness of potential barrier 
makes it difficult to open a band gap in graphene [30]. Since the 
magnetic field can suppress Klein tunneling and control the trans-
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mission effectively in graphene, one may wonder. How about the 
transmission through a realistic magnetic field? Will the smooth-
ness of magnetic barrier weaken the control? In this work, we 
focus our attention on the transport properties through two real-
istic magnetic structures with smooth edges created by depositing 
ferromagnetic metallic strips on the top of graphene. The results 
show that for magnetic barriers with different symmetries, the 
transmission spectra and resonant behaviors have completely dif-
ferent characteristics, which are related to resonant states in the 
vector potential barriers or wells. In the presence or absence of 
a smooth electric barrier, the effect of structural parameters on 
the transmission probability and conductance is discussed in de-
tail, and compared with that for idealistic magnetic barriers.

The paper is organized as follows. In Section 2, we introduce 
the proposed realistic magnetic barriers, the smooth electric bar-
rier, and the transfer-matrix method. In Section 3, we show the 
numerical results and discussions for two kinds of magnetic bar-
riers with different magnetization orientations. Finally, we draw 
conclusions in Section 4.

2. Model and method

We shall consider two kinds of realistic magnetic barriers (see 
Figs. 1(b) and (c)), which can be produced by the deposition of 
a local ferromagnetic metallic strip on the top of graphene sheet 
with perpendicular or parallel magnetization (see Fig. 1(a)). The 
profiles of magnetic barriers can be expressed by B = B(x, z0)ẑ
with

B = B0[K (x + d/2, z0) − K (x − d/2, z0)], (1)

where B0 = M0h/d [2]. M0, h, and d are the magnetization, 
height, and thickness of strips, respectively, and z0 is the dis-
tance between the strips and the graphene sheet. It has been 
assumed that h � d and h � z0. For magnetization perpendicu-
lar to graphene sheet, K (x, z0) = 2xd/(x2 + z2

0). For magnetization 
parallel to graphene sheet, K (x, z0) = z0d/(x2 + z2

0). In the Landau 
gauge, the corresponding magnetic vector potential has the form 
A(x, z0) = [0, A(x, z0), 0], in which

A(x, z0) = B0d ln
(x + d/2)2 + z2

0

(x − d/2)2 + z2
0

, (2)

and

A(x, z0) = B0d[tan−1(
x + d/2

z0
) − tan−1(

x − d/2

z0
)], (3)

for perpendicular and parallel magnetizations, respectively, as de-
picted in Figs. 1(b) and (c). One can see that the magnetic barrier 
in Fig. 1(b) is symmetric, B(−x, z0) = B(x, z0), while its vector po-
tential is antisymmetric, A(−x, z0) = −A(x, z0). However, the mag-
netic barrier in Fig. 1(c) is antisymmetric, B(−x, z0) = −B(x, z0), 
while its vector potential is symmetric, A(−x, z0) = A(x, z0). The 
symmetry of vector potential plays a key role to the transport 
properties of graphene (as discussed in Section 3). The local top 
gate of Fig. 1(a) produces an electric barrier and defines a shift of 
the Dirac points. In order to model a more realistic electric barrier 
and study its effect on transmission, we use an analytical expres-
sion for the potential distribution, which is read as

V (x) = V 0

2
[erf (

2(d/2 + x)

b
− 2) + erf (

2(d/2 − x)

b
− 2)], (4)

as shown in Fig. 1(d). Here, erf (x) is the error function, and b
determines the width of the crossover region [12]. It should be 
noted that, for the electric barrier, we are mainly interested in 
the transport behavior as the edge of potential region becomes 

Fig. 1. (a) Schematic diagram of the magnetic–electric structure created by a local 
ferromagnetic metallic (FM) strip, a local top gate, and a global back gate. Here, 
the FM strip with the top gate is deposited on the top of graphene sheet separated 
by a thin oxide layer, and the graphene is sat on SiO2 substrate with an applied 
back gate. (b) Profiles of the magnetic barrier (the solid curve) and its correspond-
ing vector potential (the dashed curve) produced by the FM strip for perpendicular 
magnetization, where d = 1.0 and z0 = 0.05. (c) The same as that in (b) but for par-
allel magnetization. (d) Profile of the electric potential V (x) produced by the local 
top gate and modelled by an error function, where V 0 = 5.0.

smooth, even though Eq. (4) is not exact enough for a realistic bar-
rier. The specific structures of realistic electric barriers produced 
by gate voltage or by adsorbing adatoms are different and compli-
cated [31–33], however, they should be smooth inevitably.

At low energy, the electron in graphene could be described by 
a massless Dirac equation with a linear energy dispersion. In the 
presence of an inhomogeneous magnetic–electric field perpendic-
ular to the plane, the equation reads as

[v f σ · (p + eA(x)) + V (x)I]� = E�, (5)

where v f ≈ 0.86 × 106 m/s, the pseudospin matrix σ = (σx, σy)

is Pauli matrix, p = (px, p y) is the momentum operator, I is the 
2 × 2 unit matrix. The dimensionless units are introduced: lB =√

h̄/eB0, E0 = h̄v f /lB , B(x) → B0 B(x), A(x) → B0lB A(x), �r → lB�r, 
k → k/lB , and E → E0 E . For B0 = 0.1 T, one has lB = 81 nm and 
E0 = 7 meV. For an arbitrary vector potential or electric potential 
in the region −d/2 ≤ x ≤ d/2, it could be divided into N segments, 
each of which has the width d/N . The vector potential or electric 
potential in jth segment can be approximately viewed as con-
stant A j or V j . We consider a short and wide magnetic–electric 
structure, i.e., its length in the x direction is much smaller than 
its width in the y direction, in which the edge effect along the 
y direction could be neglected and the transverse wave vector 
ky is conserved [27]. Thus, the wavefunction can be assumed as 
�(x, y) = ψ(x)eiky y . Substituting �(x, y) into Eq. (5), we can ob-
tain

[ d2

dx2
+ (E − V )2 − (ky + A)2]ψ(x) = 0. (6)

If we define ε = (E − V )2 and Ueff = (ky + A)2, Eq. (6) will re-
duce to a Schrödinger equation for a conventional electron, which 
is helpful for analyzing the resonant tunneling of Dirac electron. 
The effective potential Ueff depends not only on the vector poten-
tial A but also on the transverse wave vector ky . For given incident 
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