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The density of states of the two-dimensional fermionic Hubbard model supplemented with perpendicular 
homogeneous magnetic field is calculated using the strong coupling diagram technique. The density of 
states at the Fermi level as a function of the inverse magnetic induction oscillates, and the frequency of 
these oscillations increases by an order of magnitude with the change of the deviation from half-filling 
from small to moderate values. This frequency variation is caused by the change of Landau subbands 
contributing to the density – in the former case they are at the periphery of the Landau spectrum, while 
in the latter case the dominant contribution is provided by bands near its center. With changing induction 
these groups of bands behave differently. For small deviations from half-filling the calculated oscillation 
frequency is comparable to that observed in quantum oscillation experiments in yttrium cuprates.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Studies of systems with strong electron correlations in magnetic 
fields were started shortly after the discovery of the high-Tc su-
perconductivity. One of the first theoretical approaches used for 
this purpose was the exact diagonalization of small clusters (see, 
e.g., [1–3]). It is worth noting that, due to the Peierls factor [4], 
the translation symmetry of the system is changed [5] – in mod-
erate magnetic fields the size of the elementary cell increases 
significantly. Clusters with sizes smaller than the size of this su-
percell violate the symmetry of the Hamiltonian and, therefore, it 
is difficult to extend exact-diagonalization results to larger crystals. 
Larger clusters can be considered in the mean-field approximation 
(see, e.g., [6–8]). However, in this approach the dynamic character 
of strong correlations is neglected.

The interest in this problem was revived with the observa-
tion of low-frequency quantum oscillations in the mixed state 
of underdoped yttrium cuprates [9–12]. Based on the Onsager–
Lifshitz–Kosevich theory for metals [13] the decreased quantum 
oscillation frequencies were interpreted as a manifestation of small 
Fermi surface pockets [14]. To explain the appearance of these 
small pockets, proposals for various states with broken transla-
tional symmetry were put forward [15–17]. In [18,19] and [20]
decreased quantum oscillation frequencies were related to super-
conducting fluctuations and to properties of the marginal Fermi 
liquid. To take proper account of strong electron correlations inher-
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ent in underdoped cuprates, in [21] the two-dimensional (2D) t– J
model supplemented with perpendicular magnetic field was con-
sidered. Calculations were carried out using the Mori projection 
operator technique. Due to complicated commutation relations of 
the Hubbard operators only a few terms of the continued fraction 
representing Green’s function were obtained. It was shown that the 
density of electron states (DOS) at the Fermi level oscillates with 
field strength. The oscillations have usual for large Fermi surfaces 
high frequencies, however, they are modulated by low-frequency 
components.

In this work we use the strong coupling diagram technique 
[22–27] for investigating the DOS of the 2D fermionic Hubbard 
model supplemented with perpendicular homogeneous magnetic 
field. This approach allows us to consider large enough clusters 
in fields of moderate intensities. It is known [5,28,29] that the 
energy spectrum of a weakly correlated metal consists of Landau 
subbands, which appear in the crystal potential instead of the Lan-
dau levels of free electrons. We found that, in the approximation 
of a site-independent irreducible part, each Landau subband forms 
strongly correlated bands independently of other subbands. Using 
for the irreducible part the Hubbard-I approximation [30] we re-
vealed that the DOS at the Fermi level oscillates as a function of 
inverse magnetic induction. The frequency F of these oscillations 
increases by an order of magnitude when the deviation of the elec-
tron filling n̄ from half-filling grows from a few percent to 25%. For 
a Hubbard repulsion U = 8t , t being the hopping constant, and an 
intersite distance a = 4Å, the frequency is of the order of 1 kT for 
small values of |1 − n̄|. This frequency is close to those observed 
in experiments on quantum oscillations. The origin of the strong 
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variation of the frequency with electron filling lies in the difference 
in Landau subbands contributing to the DOS at the Fermi level. In 
the case of small doping these subbands are located at the periph-
ery of the spectrum, while for larger values of |1 − n̄| the subbands 
near the central part of the spectrum make the main contribution. 
The behavior of these two groups of subbands as a function of 
magnetic induction is different. The influence of the Zeeman term 
on the DOS oscillations is also considered.

2. Main formulas

The Hamiltonian of the Hubbard model [30,31] supplemented 
with magnetic field reads

H =
∑
ll′σ

tll′ exp

⎛
⎝i

e

h̄

l∫
l′

A(r)dr

⎞
⎠a†

l′σ alσ

+ 1

2
gμB B

∑
lσ

σa†
lσ alσ

+
∑
lσ

(
U

2
nlσ nl,−σ − μnlσ

)
, (1)

where 2D vectors l and l′ label sites of a square plane lattice, 
σ = ±1 is the spin projection, a†

lσ and alσ are electron creation 
and annihilation operators. The first (kinetic) term of the Hamilto-
nian contains the hopping matrix element tll′ and the exponential 
factor with the Peierls phase [4], in which A(r) is the vector po-
tential. The Peierls description is valid for moderate fields, until the 
magnetic length becomes comparable to the spatial extent of the 
Wannier function [5,4]. The second (Zeeman) term of the Hamilto-
nian contains the g-factor g ≈ 2, the Bohr magneton μB and the 
magnetic induction B of the external magnetic field. It is supposed 
that the field is directed perpendicularly to the plane, homoge-
neous and only weakly disturbed by internal currents [32]. The 
last term of Hamiltonian (1) involves the on-site Coulomb repul-
sion U , the electron number operator nlσ = a†

lσ alσ as well as the 
chemical potential μ.

In the following the Landau gauge is used, in which A(l) =
−Blyx, where l y is the y component of the site vector l and x is 
the unit vector along the x axis. If we suppose that only the near-
est neighbor hopping constant is nonzero, tll′ = t

∑
a δl,l′+a where 

a are four vectors connecting nearest neighbor sites, the Peierls ex-
ponential in the kinetic term of the Hamiltonian can be written as

eiκal, κa = e

h̄
Baxy, (2)

where ax is the x component of the vector a and y is the unit 
vector along the y axis.

We will restrict ourselves to fields satisfying the condition

e

h̄
Ba2 = 2π

n′

n
, (3)

where a = |a|, n and n′ < n are integers with no common factor. In 
this case the kinetic term of Hamiltonian (1) defines its translation 
properties – the Hamiltonian is invariant with respect to transla-
tions by the lattice period along the x axis and by n lattice periods 
along the y axis. To retain this symmetry we apply the periodic 
Born–von Karman boundary conditions to the sample with Nx sites 
along the x axis and nN y sites along the y axis. The boundary con-

ditions define the set of allowed wave vectors 
(

2πnx
Nxa ,

2πny
nN ya

)
with 

integers nx and ny . As can be seen from (2) and (3), the momenta 
κa belong to this set of allowed wave vectors.

Let us consider the electron Green’s function

Gσ (l′τ ′, lτ ) = 〈T āl′σ (τ ′)alσ (τ )〉, (4)

where the statistical averaging denoted by the angular brackets 
and time dependencies of the operators

alσ (τ ) = eHτ alσ e−Hτ and ālσ (τ ) = eHτ a†
lσ e−Hτ

are determined by Hamiltonian (1). T is the time-ordering op-
erator which arranges operators from right to left in ascending 
order of times τ . Hamiltonian (1) conserves the spin projection 
and, therefore, the Green’s function (4) is diagonal in spin. To cal-
culate this function we use the strong coupling diagram technique 
[22–27], in which it is expressed as a series expansion with the 
unperturbed Hamiltonian H0 given by the last term of Hamilto-
nian (1). The role of perturbation, over which the power expansion 
is carried out, is played by the first two terms of this Hamiltonian. 
For brevity, the sum of these two terms is denoted as

H1 =
∑
ll′σ

T σ (ll′)a†
l′σ alσ .

Terms of the series expansion are constructed from on-site cumu-
lants of the electron operators alσ (τ ) and ālσ (τ ) and hopping lines 
corresponding to the Hamiltonian H1 (though the Zeeman term in 
H1 does not lead to the transfer of an electron to another site, we 
retain the term hopping line used in this diagram technique). The 
averaging and time dependencies of operators in the cumulants are 
determined by the Hamiltonian H0. As in the weak-coupling per-
turbation theory, the linked-cluster theorem allows one to discard 
disconnected diagrams and to carry out partial summations of the 
remaining connected diagrams.

The diagram is said to be irreducible if it cannot be divided into 
two disconnected parts by cutting some hopping line. The sum of 
all irreducible diagrams without external ends is termed the irre-
ducible part K σ (l′τ ′, lτ ). In terms of this quantity the equation for 
the Green’s function reads

Gσ (l′τ ′, lτ ) = K σ (l′τ ′, lτ ) +
∑
l1l′1

β∫
0

K σ (l′τ ′, l1τ1)

× T σ (l1l′1)Gσ (l′1τ1, lτ )dτ1, (5)

or, after Fourier transformations over space and time variables,

Gσ (q′qm) = K σ (q′qm) +
∑
q1q′

1

K σ (q′q1m)

× T σ (q1q′
1)Gσ (q′

1qm), (6)

where β = 1/T is the inverse temperature, m is an integer deter-
mining the Matsubara frequency ωm = (2m + 1)π T and

T σ (qq′) = t
[

eiq′
xaδq,q′+κn′ + e−iq′

xaδq,q′−κn′

+ 2 cos(q′
ya)δqq′

]
+ 1

2
gμB Bσδqq′ , (7)

qx and qy are components of the wave vector q, which belong to 
the first Brillouin zone, and κ = 2π

na y. In the derivation of (7) we 
took into account that κa in (2) belongs to the set of momenta 
determined by the chosen periodic boundary conditions. Equations 
(5) and (6) are forms of the Larkin equation [33]. Analogous equa-
tions were used for calculating the electron Green’s function of the 
Hubbard model in the absence of the magnetic field [22–27].

In (6), Gσ (q′qm) and K σ (q′qm) are not diagonal with respect 
to momenta due to the reduced translation symmetry of the prob-
lem. However, from symmetry arguments one can see that these 



Download English Version:

https://daneshyari.com/en/article/1859644

Download Persian Version:

https://daneshyari.com/article/1859644

Daneshyari.com

https://daneshyari.com/en/article/1859644
https://daneshyari.com/article/1859644
https://daneshyari.com

