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1. Introduction

Dissipative structures arise in many different fields of nonlinear
science [1]. They are stable patterns that arise far from equilib-
rium in dissipative systems. They exist because of the interplay
between diffusion/diffraction and nonlinearity on one hand and
between losses and an external source on the other hand. It was
shown that such structures are significantly modified when a sym-
metry breaking is present in the system, i.e., odd-order spatial (for
diffractive/diffusive systems) or temporal (for dispersive/temporal
systems) derivatives leading to convective drift, or walk off terms
depending on the specific physical situations. The effect of convec-
tive terms on dissipative structures has attracted a lot of interest
in hydrodynamics [2], plasma physics [3], traffic flow [4] and non-
linear optics [5]. The main focus has been on the induced drift
and the resulting convectively or absolutely unstable regimes [6,7].
More recently, there have been some studies on the nonlinear
symmetry breaking induced by those terms in nonlinear optical
dissipative systems [8,9]. They showed that albeit the linear nature
of the broken symmetry, the nonlinearity of the system is affected,
leading to spectral asymmetry and power dependent velocities of
the traveling waves.

Here, we report on an important aspect of symmetry breaking
that has not yet been investigated that drastically affects nonlin-
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ear bifurcations occurring in dissipative systems. We show that the
time reversal symmetry breaking induced by third-order dispersion
term drastically impacts the nature of the bifurcation from super-
critical to subcritical and vice versa. From physical point of view,
this leads to the appearance of a bistable regime between modu-
lated and unmodulated solutions that can lead to the formation of
localized structures. Here we perform, to the best of our knowl-
edge, the first analytical study of the effect of convective terms
on the nonlinear bifurcation in the case of modulated solutions
appearing in optical resonators. We consider a passive nonlinear
resonator whose dynamics is well described, in the mean field ap-
proximation, by the well known Lugiato-Lefever (LL) equation [10].
In a recent study, we analytically and experimentally investigated
the spectral asymmetry induced by a convective term [9]. We
showed that the third-order dispersion (TOD) induced an asym-
metry in the intensities of high-order harmonics resulting in a
transition from symmetric to asymmetric dissipative structures. In
this work, we show how the symmetry breaking actually modi-
fies the intrinsic nonlinearity of the system. More precisely, we
show that it affects the bifurcation nature, at onset of the insta-
bility, leading to a transition from a sub to a supercritical bifurcation
which drastically impacts the subsequent dynamics above thresh-
old. The analytical description of this bifurcation transition, based
on the amplitude equation of the passive optical cavity, demon-
strates an original dependence of the nonlinear saturation term
upon the symmetry breaking term (here the third-order dispersion
term).
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2. The model

We start from the dimensionless mean-field equation describ-
ing nonlinear resonators near the zero-dispersion wavelength [11]:

QE(t, T) = [—1 FI(EE T = A) — ind?2 +d333] E(t,T)+S.
(1)

where S and E are the normalized slowly varying envelopes for
pump and signal fields respectively, A is the normalized cavity de-
tuning, n is the sign of the second-order dispersion term (SOD)
and d3 is the normalized third-order dispersion coefficient. t and
T correspond respectively to the slow and fast time [12]. Details on
the normalization can be found in [13,11]. Both convective and ab-
solute instabilities have been recently reported for the steady-state
solution E; satisfying the equation S = [1+i(A — I;)]Es where
Is = |Es|?> = E2 (E; is taken to be real) [14]. In this paper, we
devote our attention to the monostable case (i.e. A < +/3) with
anomalous dispersion where Eq. (1) exhibits a bifurcation at Iy =1,
corresponding to a pump power Xs = |S|?> =2 —2A + A2, The sys-
tem then evolves towards modulated solutions characterized by a
frequency Q. =.,/(A —2)/n and a wave vector k. = —d3$2§ [14].
When d3 =0, Eq. (1) reduces to the well-know LL equation de-
scribing nonlinear spatial cavities [10]. It has been shown that the
modulated stationary solutions of that equation can be analytically
calculated by the standard method of bifurcation theory [15,16].
From this study comes the well-known transitional detuning A; =
41/30, characterizing the passing from a supercritical bifurcation,
where the modulated solutions appear above threshold for pump
powers higher than X; and are stable, to a subcritical bifurcation
where the modulated solutions appear above threshold for pump
powers lower than X and are unstable.

3. Analytical approach

In order to study the effect of the third-order dispersion on
the stationary modulated solutions and the transitional detuning,
we perform the same multi-scale analysis right above the in-
stability threshold but now including third-order dispersion. We
start by expanding the variables in multiple orders of a small pa-
rameter &, defined as €2 = I; — 1, that is the distance from the
instability threshold. The envelope of the electric field is rewrit-
ten in terms of the amplitudes a, defined by E = Es + €a; +
g%ay + €3a3 + .... Following the approach of [15,16], and tak-
ing into account the gain spectrum of the instability [12] we
expand the slow time t and the fast time t. We introduce the
new times: To=t, Ty =¢t, T =¢€%t, g=1 and 7] = €T soO
that the corresponding temporal derivatives become 9; = dr, +
£or, + 82872 and 0; = 0, + £9¢,. We then assume that the am-
plitudes a; is the sum of quasi-monochromatic waves written
in the form ay = (A;elToFkeTo) 4 A%e=ictotkcTo)) where A,
and its complex conjugate A} are slowly varying amplitudes, and
ax = Dy + Aljei(ﬂcfoﬁ-KcTo) + Ak*e—i(QcTo+KcTo) + C’jeﬁ(QcTo-H(cTo) +
C, e 2@totkeTo) with k =2, 3. This form of a; is justified by the
fact that right above the instability threshold, the gain exceeds
unity only in the vicinity of Q ~ +Q., while for the second- and
third-order corrections, contributions at 0, +2. appear because of
the nonlinear interactions. By substitution of the above expansions
in Eq. (1), we obtain a hierarchy of equations for the successive
orders of ¢. The evolution of A; is described by the following
equation, obtained as a consequence of a solvability condition [15,
16] at the third order:

A+ 3d3Q%0: A= (Is — A + (292 + 3id32)92 A
+ (51 +i52)| A% A, (2)

where we have set A =¢A; and the parameters are defined as

2G+3 G2(1 —2G) + H2(2G - 3)
S1 =24 s (3)
G2 (G? — H?)2 + 4H?
4H[2(1 = 2G) + G2 — H%]
5 = 2H[20 ~20) , (a)

(G? — H?)? + 4H?

with
G=3(A-2)
H = —6d3Q>

This equation of complex Ginzburg-Landau type describes the time
evolution of the Stokes wave (fundamental mode) above threshold.
First, note that, in absence of TOD (83 = 0), three terms in Eq. (2)
disappear since d3 =0 and s, = 0. As a result, the presence of TOD
drastically impacts the dynamics by introducing drift and diffrac-
tion effects (terms in Eq. (2) with d3) together with a nonlinear
frequency modulation (term with s;). More importantly, the pres-
ence of TOD affects the nature of the bifurcation as can be seen
from Eq. (3) since the nonlinear coefficient s; can change sign as it
will be shown below. This clearly demonstrates how the symmetry
breaking introduces a rich and a complex dynamics. However, in
what follows, we only investigate the important dynamics result-
ing from transitions between super- and sub-critical bifurcations.
Before proceeding further, and to give a complete analytical de-
scription above threshold, let us resolve the system up to the third
order. After lengthy but straightforward calculations, we find the
following analytical expression for the dissipative structures:

Ett,t)=D+ AJFei(QcTJr(Kc‘H()t) + A*e*i(QcT+(Kc+K)t)

+ C+ezi(QCT+(KC+K)I) + C—e—zi(Qct-ﬁ—(Kc—&-K)t)’ (5)
with
12| Agt|? .
D:ES+?[(2G+3)+3I(G+1)], (6)
AT =(1+1)|Ag| (1 — MH+iN), 7)
A™ =1 +1|Ag| (1+MH +iN), (8)
14+i—Q2+i)(G—H)
ct =2|A4)? 9
| St| GZ—HZ—ZIH ) ( )
_ 1+i—2+i)(G+H)
C™ =2|Aq)? , 10
| Ast| 7 _HZ+2iH (10)
K = 53| Agt|?, (11)
|Ast)? = (1 = I)1/s1. (12)
M= Al 12H — 20GH (13)
= 4st (GZ—H2)2+4H2’
N=1Is—1

. 2 2
76+9 (6—106)(G H)>’ (14)

Agl®(3+12
—+ |Ast| ( + 2 (G2 _ H2)2 1 4H2

where |Ag| and « are the amplitude and the nonlinear correction
to the wavevector of the nonlinear dissipative solution of Eq. (2).
Here we purposely neglected the dependence of the spectral am-
plitudes in the fast time T as we are only interested in the leading
contribution of each harmonics.

4. Third-order dispersion and the nature of the bifurcation
Nonlinear dynamics above threshold is mainly ruled by the last

nonlinear term of Eq. (2). The complex coefficient s; + isp of this
nonlinear term is of a crucial importance in the above threshold
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