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It is analytically shown that symmetry breaking, in dissipative systems, affects the nature of the 
bifurcation at onset of instability resulting in transitions from super to subcritical bifurcations. In the case 
of a nonlinear fiber cavity, we have derived an amplitude equation to describe the nonlinear dynamics 
above threshold. An analytical expression of the critical transition curve is obtained and the predictions 
are in excellent agreement with the numerical solutions of the full dynamical model.
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1. Introduction

Dissipative structures arise in many different fields of nonlinear 
science [1]. They are stable patterns that arise far from equilib-
rium in dissipative systems. They exist because of the interplay 
between diffusion/diffraction and nonlinearity on one hand and 
between losses and an external source on the other hand. It was 
shown that such structures are significantly modified when a sym-
metry breaking is present in the system, i.e., odd-order spatial (for 
diffractive/diffusive systems) or temporal (for dispersive/temporal 
systems) derivatives leading to convective drift, or walk off terms 
depending on the specific physical situations. The effect of convec-
tive terms on dissipative structures has attracted a lot of interest 
in hydrodynamics [2], plasma physics [3], traffic flow [4] and non-
linear optics [5]. The main focus has been on the induced drift 
and the resulting convectively or absolutely unstable regimes [6,7]. 
More recently, there have been some studies on the nonlinear 
symmetry breaking induced by those terms in nonlinear optical 
dissipative systems [8,9]. They showed that albeit the linear nature 
of the broken symmetry, the nonlinearity of the system is affected, 
leading to spectral asymmetry and power dependent velocities of 
the traveling waves.

Here, we report on an important aspect of symmetry breaking 
that has not yet been investigated that drastically affects nonlin-
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ear bifurcations occurring in dissipative systems. We show that the 
time reversal symmetry breaking induced by third-order dispersion 
term drastically impacts the nature of the bifurcation from super-
critical to subcritical and vice versa. From physical point of view, 
this leads to the appearance of a bistable regime between modu-
lated and unmodulated solutions that can lead to the formation of 
localized structures. Here we perform, to the best of our knowl-
edge, the first analytical study of the effect of convective terms 
on the nonlinear bifurcation in the case of modulated solutions 
appearing in optical resonators. We consider a passive nonlinear 
resonator whose dynamics is well described, in the mean field ap-
proximation, by the well known Lugiato–Lefever (LL) equation [10]. 
In a recent study, we analytically and experimentally investigated 
the spectral asymmetry induced by a convective term [9]. We 
showed that the third-order dispersion (TOD) induced an asym-
metry in the intensities of high-order harmonics resulting in a 
transition from symmetric to asymmetric dissipative structures. In 
this work, we show how the symmetry breaking actually modi-
fies the intrinsic nonlinearity of the system. More precisely, we 
show that it affects the bifurcation nature, at onset of the insta-
bility, leading to a transition from a sub to a supercritical bifurcation
which drastically impacts the subsequent dynamics above thresh-
old. The analytical description of this bifurcation transition, based 
on the amplitude equation of the passive optical cavity, demon-
strates an original dependence of the nonlinear saturation term 
upon the symmetry breaking term (here the third-order dispersion 
term).
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2. The model

We start from the dimensionless mean-field equation describ-
ing nonlinear resonators near the zero-dispersion wavelength [11]:

∂t E(t, τ ) =
[
−1 + i(|E(t, τ )|2 − �) − iη∂2

τ + d3∂
3
τ

]
E(t, τ ) + S,

(1)

where S and E are the normalized slowly varying envelopes for 
pump and signal fields respectively, � is the normalized cavity de-
tuning, η is the sign of the second-order dispersion term (SOD) 
and d3 is the normalized third-order dispersion coefficient. t and 
τ correspond respectively to the slow and fast time [12]. Details on 
the normalization can be found in [13,11]. Both convective and ab-
solute instabilities have been recently reported for the steady-state 
solution Es satisfying the equation S = [1 + i(� − Is)] Es where 
Is = |Es|2 = E2

s (Es is taken to be real) [14]. In this paper, we 
devote our attention to the monostable case (i.e. � <

√
3) with 

anomalous dispersion where Eq. (1) exhibits a bifurcation at Is = 1, 
corresponding to a pump power Xs = |S|2 = 2 − 2� +�2. The sys-
tem then evolves towards modulated solutions characterized by a 
frequency �c = √

(� − 2)/η and a wave vector κc = −d3�
3
c [14]. 

When d3 = 0, Eq. (1) reduces to the well-know LL equation de-
scribing nonlinear spatial cavities [10]. It has been shown that the 
modulated stationary solutions of that equation can be analytically 
calculated by the standard method of bifurcation theory [15,16]. 
From this study comes the well-known transitional detuning �t =
41/30, characterizing the passing from a supercritical bifurcation, 
where the modulated solutions appear above threshold for pump 
powers higher than Xs and are stable, to a subcritical bifurcation 
where the modulated solutions appear above threshold for pump 
powers lower than Xs and are unstable.

3. Analytical approach

In order to study the effect of the third-order dispersion on 
the stationary modulated solutions and the transitional detuning, 
we perform the same multi-scale analysis right above the in-
stability threshold but now including third-order dispersion. We 
start by expanding the variables in multiple orders of a small pa-
rameter ε, defined as ε2 = Is − 1, that is the distance from the 
instability threshold. The envelope of the electric field is rewrit-
ten in terms of the amplitudes ak , defined by E = Es + εa1 +
ε2a2 + ε3a3 + . . . . Following the approach of [15,16], and tak-
ing into account the gain spectrum of the instability [12] we 
expand the slow time t and the fast time τ . We introduce the 
new times: T0 = t , T1 = εt , T2 = ε2t , τ0 = τ and τ1 = ετ so 
that the corresponding temporal derivatives become ∂t = ∂T0 +
ε∂T1 + ε2∂T2 and ∂τ = ∂τ0 + ε∂τ1 . We then assume that the am-
plitudes ak is the sum of quasi-monochromatic waves written 
in the form a1 = (

A1ei(�cτ0+κc T0) + A∗
1e−i(�cτ0+κc T0)

)
where A1

and its complex conjugate A∗
1 are slowly varying amplitudes, and 

ak = Dk + A+
k ei(�cτ0+κc T0) + A−

k e−i(�cτ0+κc T0) + C+
k e2i(�cτ0+κc T0) +

C−
k e−2i(�cτ0+κc T0) with k = 2, 3. This form of a1 is justified by the 

fact that right above the instability threshold, the gain exceeds 
unity only in the vicinity of � ≈ ±�c , while for the second- and 
third-order corrections, contributions at 0, ±2�c appear because of 
the nonlinear interactions. By substitution of the above expansions 
in Eq. (1), we obtain a hierarchy of equations for the successive 
orders of ε. The evolution of A1 is described by the following 
equation, obtained as a consequence of a solvability condition [15,
16] at the third order:

∂t A + 3d3�
2
c ∂τ A = (Is − 1)A + (2�2

c + 3id3�c)∂
2
τ A

+ (s1 + is2)|A|2 A, (2)

where we have set A = εA1 and the parameters are defined as

s1 = 24
2G + 3

G2
+ 4

G2(1 − 2G) + H2(2G − 3)

(G2 − H2)2 + 4H2
, (3)

s2 = 4H[2(1 − 2G) + G2 − H2]
(G2 − H2)2 + 4H2

, (4)

with

G = 3(� − 2)

H = −6d3�
3
c

This equation of complex Ginzburg–Landau type describes the time 
evolution of the Stokes wave (fundamental mode) above threshold. 
First, note that, in absence of TOD (β3 = 0), three terms in Eq. (2)
disappear since d3 = 0 and s2 = 0. As a result, the presence of TOD 
drastically impacts the dynamics by introducing drift and diffrac-
tion effects (terms in Eq. (2) with d3) together with a nonlinear 
frequency modulation (term with s2). More importantly, the pres-
ence of TOD affects the nature of the bifurcation as can be seen 
from Eq. (3) since the nonlinear coefficient s1 can change sign as it 
will be shown below. This clearly demonstrates how the symmetry 
breaking introduces a rich and a complex dynamics. However, in 
what follows, we only investigate the important dynamics result-
ing from transitions between super- and sub-critical bifurcations. 
Before proceeding further, and to give a complete analytical de-
scription above threshold, let us resolve the system up to the third 
order. After lengthy but straightforward calculations, we find the 
following analytical expression for the dissipative structures:

E(t, τ ) = D + A+ei(�cτ+(κc+κ)t) + A−e−i(�cτ+(κc+κ)t)

+ C+e2i(�cτ+(κc+κ)t) + C−e−2i(�cτ+(κc+κ)t), (5)

with

D = Es + 12|Ast |2
G2 [(2G + 3) + 3i(G + 1)] , (6)

A+ = (1 + i)|Ast | (1 − M H + iN) , (7)

A− = (1 + i)|Ast | (1 + M H + iN) , (8)

C+ = 2|Ast |2 1 + i − (2 + i)(G − H)

G2 − H2 − 2iH
, (9)

C− = 2|Ast |2 1 + i − (2 + i)(G + H)

G2 − H2 + 2iH
, (10)

κ = s2|Ast |2, (11)

|Ast |2 = (1 − Is)]/s1, (12)

M = |Ast |2 12H − 20G H

(G2 − H2)2 + 4H2
, (13)

N = Is − 1

+ |Ast |2
(

3 + 12
7G + 9

G2
+ (6 − 10G)(G2 − H2)

(G2 − H2)2 + 4H2

)
, (14)

where |Ast | and κ are the amplitude and the nonlinear correction 
to the wavevector of the nonlinear dissipative solution of Eq. (2). 
Here we purposely neglected the dependence of the spectral am-
plitudes in the fast time τ as we are only interested in the leading 
contribution of each harmonics.

4. Third-order dispersion and the nature of the bifurcation

Nonlinear dynamics above threshold is mainly ruled by the last 
nonlinear term of Eq. (2). The complex coefficient s1 + is2 of this 
nonlinear term is of a crucial importance in the above threshold 
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