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We derive analytic approximations to the solutions of the Lane–Emden equation, a basic equation in 
Astrophysics that describes the Newtonian equilibrium structure of a self-gravitating polytropic fluid 
sphere. After recalling some basic results, we focus on the construction of rational approximations, 
discussing the limitations of previous attempts, and providing new accurate approximate solutions.
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1. Introduction

Polytropic fluid sphere models are ubiquitous in Astrophysics. 
They have been instrumental in the development of stellar struc-
ture theory [1], as well as in the investigation of the dynamics of 
spherical galaxies and star clusters [2]. Gaining insight into their 
equilibrium and stability properties is therefore an important task 
that has attracted, and still attracts much interest.

Polytropic models are characterized by a simple equation of 
state, p ∝ ρ(n+1)/n , with p and ρ the fluid pressure and density, 
respectively, and n the so-called polytropic index. In an isotropic 
configuration, the Newtonian, hydrostatic equilibrium structure of 
the fluid sphere is then determined by a second order, generally 
nonlinear ordinary differential equation for the gravitational po-
tential,

y′′ + 2

x
y′ = −yn , (1)

known as the Lane–Emden equation [LEE hereafter; here yn =
ρ(x)/ρ(0), x is a scaled radial coordinate, and the prime denotes 
derivation with respect to x]. The problem is completed by the 
boundary conditions

y(0) = 1, y′(0) = 0 , (2)

which ensure regularity at the sphere center. For 0 ≤ n < 5, the 
solutions of the boundary value problem (1)–(2) decrease mono-
tonically with x and vanish at a finite radius x1 (the star radius, 
in a stellar context), which is a rapidly increasing function of n
(x1 → ∞ for n → 5).
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Exact solutions to the LEE are only known for the linear cases 
n = 0, 1, and for n = 5. For other values of n, well-known numer-
ical methods for initial value problems may be used to compute 
accurate approximate solutions. Reference results have been ob-
tained in [3] and [4], through Runge–Kutta integrations, and in 
[5], using the Chebyshev pseudospectral method. Analytic approx-
imations have also been sought; classical works are [6], focusing 
on rational approximations; [7], in which a sophisticated func-
tional ansatz was developed; and [8], where the delta-perturbation 
method was used to derive an approximation for x1(n).

In the last decade, the search for approximate solutions to the 
LEE has produced many papers (see, e.g., the list given in the in-
troduction of [9]), but, apparently, few useful results. A problem is 
that most of these works restrict to the interval [0, 1], denoted as 
the “core region” in astrophysical contexts, even though the radial 
ranges of interest are typically much larger. Consider, for exam-
ple, the n = 3 polytrope, which provides a reasonable description 
of the Sun’s structure, and is consequently widely used as a test 
case: since its boundary is at x = x1 � 6.897, a useful approxima-
tion for the structure of this polytrope should cover a range about 
seven times larger than the core region.

Moreover, in the core region, approximate solutions of any de-
sired accuracy can be easily constructed using conventional Taylor 
series expansions about the origin, because the convergence range 
of these series is always significantly larger than unity (see [10]). It 
is therefore unclear why so many papers in recent years have fo-
cused on using more complicated approaches (Adomian decompo-
sition, Homotopy analysis method, Boubaker polynomials, among 
others; see [9] and references therein) to derive alternative approx-
imations over [0, 1]. Often in these papers important works on the 
properties of series solutions to the LEE, such as [10] and [11], are 
not cited, and a detailed comparison with relevant previous work 
is lacking.
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This provided motivation for the present Letter, whose first ob-
jective is to recall some basic results that should be taken into 
account, and used as a reference where appropriate, by anybody 
seeking new approximate solutions to the LEE. We shall then focus 
on the construction of rational approximations, clarifying the lim-
itations of previous attempts, and deriving some new, simple and 
accurate approximate solutions to (1)–(2).

2. Some basic results

a) Exact solutions. It is said in [9] that “only the cases n = 0, 
n = 1 and n = 5 can be solved analytically. . . ”. This is probably 
true, but, as far as we know, it has not yet been proven. It was 
stated in [12], without a proof, that application of the Lie group 
analysis shows that (1) is nonintegrable in a closed form for other 
values of n, because its Lie algebra is zero-dimensional. But then, it 
was also noted that there are some – albeit rare – cases in which a 
zero-dimensional Lie algebra does not preclude integrability. Thus, 
it would seem more prudent to say that the cases n = 0, 1, 5 are 
the only ones that are currently known to be analytically solv-
able.

b) Scaling. In some works, as for example in [13], an apparent 
generalization of the problem was considered, with the boundary 
condition on y given by

y(0) = a , (3)

a being a positive constant. It is readily seen, however, that the 
scaling

y = aỹ, x = x̃/a(n−1)/2, (4)

maps (1) into an equation of the same form for ỹ(x̃), with 
ỹ(0) = 1, thus reducing the problem to the standard one. Most of 
the figures of [13] are just illustrations of this scaling; for example, 
the only difference between the solutions displayed in Figs. 7, 8, 
and 9 is a scaling factor a for the y-axis and a 1/a factor for the 
x-axis, in agreement with (4).

c) Series solutions. Taylor series expansions for y about the ori-
gin (up to the x10 power) were given in [13], for several values 
of n. Those series are special cases of the well-known general ex-
pansion

y � 1 − 1

3! x2 + n

5! x4 − n(8n − 5)

3 × 7! x6

+ n(122n2 − 183n + 70)

9 × 9! x8

− n(5032n3 − 12 642n2 + 10 805n − 3150)

45 × 11! x10 + . . . (5)

(see, e.g., [4] and references therein). Analytic calculation of higher 
order terms in (5) is cumbersome, but, when needed, such terms 
can be easily obtained numerically. We have computed some of 
them using the stable, coupled recurrence relations for y and ρ
given in [10], with the purpose of estimating the accuracy of (5), 
truncated at the x10 term, in the core region. We find that, for n =
1, 2, 3, 4, the values of y(1) are correct to 9, 5, 4, and 3 decimal 
digits, respectively. Accuracy is of course higher at smaller values 
of x. Thus, up to n = 4, the first six terms in the series expansion 
(5) yield sufficient accuracy in the core region for most practical 
purposes.

We note that, since the Taylor series expansion converges in 
the core region, and can be easily computed with high accuracy, it 
should be used as a benchmark for any alternative approximation 
over [0, 1].

d) Convergence of the series solutions. It has long been known 
that, for n large enough, the Taylor series expansions about the 
origin do not cover the whole radial extent of the star (see, e.g., 
[14] and [15]). More recently, the convergence radius xs of the se-
ries expansion was accurately determined (see [10] and [11]) for 
several values of n, through non-trivial numerical computations. It 
was found that xs is a decreasing function of n, and that the ex-
pansion converges over the whole radial extent of the star only for 
n smaller than about 1.9. For larger values of n, xs becomes a frac-
tion of x1: xs/x1 is less than 2/5 for n = 3, and only about 2/15
for n = 4. This behavior results from the presence of singularities 
in the complex plane that were investigated in detail in [11]. Both 
in [10] and in [11] it was also shown that the singularities may 
be transformed away through appropriate changes of independent 
variable. The expansions in the new variables do converge up to 
the star boundary, albeit quite slowly (very slowly for n > 3).

e) Other approximations. Despite the long history of the subject, 
few useful, alternative analytic approximations have been derived 
that cover the whole radial range. The one constructed in [7] is 
accurate, and in principle holds for any n, but has a complicated 
structure, with three coefficients to be fitted, case by case, and 
an arbitrarily chosen function; optimal coefficients were only com-
puted for n = 0.5, 1, 1.5, 2, 3, and for some other n values larger 
than 5 (see Table 1 of [7]). The (2, 2) Padé approximant computed 
in [6] was shown to be accurate for 0 ≤ n ≤ 2.5, but its behav-
ior for larger n is unclear. Approximations of a different form were 
derived in [10], which require a priori knowledge of both x1 and 
y′(x1). The coefficients of these approximations were tabulated for 
integer and half-integer values of n, in the range 1 ≤ n ≤ 4.

3. Rational approximations

A well-known technique for extending the accuracy of the se-
ries expansions beyond their radius of convergence is that of the 
Padé approximants, which are rational approximations constructed 
from the Taylor series (see, e.g., [16]). In the context of the LEE, 
this approach was first pursued in [6], where the first two di-
agonal Padé approximants, y(1,1)

n and y(2,2)
n , were computed. The 

second Padé approximant, which results from imposing the first 
four terms in the Taylor series expansion around the origin, was 
written as

y(2,2)
n = a1 + a2x2 + a3x4

b1 + b2x2 + b3x4
, (6)

with

a1 = b1 = 45 360(17n − 50) ,

a2 = 420(178n2 − 951n + 1250) ,

a3 = 1290n3 − 10 849n2 + 29 100n − 24 500

b2 = 420(178n2 − 645n + 350) ,

b3 = 15n(86n2 − 321n + 190) . (7)

For 0 ≤ n ≤ 2.5, it provides a good approximation over the whole 
radial extent of the star, because it yields fairly accurate values of 
the star radius, with a maximum error, at n = 2.5, of about 1.7%. 
The behavior for larger n was not discussed in [6], but one may 
foresee problems when approaching n = 3, because the coefficients 
a1 and b1 vanish for n = 50/17 � 2.941. In fact, y(2,2)

n can be seen 
to exactly reduce to y(1,1)

n at n = 50/17, and we may consequently 
expect loss of accuracy on both sides of this value.

Things are a little worse, however, because of other changes 
of sign in the coefficients, which yield a complicated structure for 
the roots of the numerator of (6), x2

1± = (−a2 ±
√

a2
2 − 4a1a3)/2a3. 
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