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We report a numerical observation that multiplicative random forcing (noise) significantly increases 
the probability of formation of extreme events in the one-dimensional, focusing nonlinear Schrödinger 
equation. Furthermore, this phenomenon is sensitive to the noise’s spatial correlation length. Highly 
correlated multiplicative noise may increase the probability of extreme events even when the average 
nonlinearity of the system is weak. On the contrary, noise with short spatial correlations substantially 
increases the probability of extreme events only for sufficiently strong average nonlinearity.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Occurrence of waves whose amplitude exceeds the average by 
several standard deviations has been actively studied in such di-
verse areas as nonlinear optics and water waves; see, e.g., recent 
reviews [1–4] and references therein. Below we will refer to such 
waves as rogue waves irrespective of the physical context in which 
they occur. The nonlinear Schrödinger equation (NLS) has been 
considered as a toy model that is capable of producing rogue 
waves in fiber optics (see, e.g., [5]). In the oceanic wave theory, 
the NLS describes the initial stage of evolution of a weakly mod-
ulated wave packet. While this envelope equation cannot describe 
formation of a rogue wave, which is a single wave event, it can 
still indicate where a rogue wave may occur (see, e.g., [6–10] and 
references therein). Notably, the NLS model does predict a higher 
probability of observing rogue waves than the linear model.

In this letter we report a numerical observation that noise 
terms included in the NLS further increase the probability of rogue 
waves formation. Furthermore, certain types of noise do so consid-
erably more than others, with a spatially highly correlated multi-
plicative noise resulting in the most prominent such an increase. 
We emphasize that since the NLS is only a toy model of rogue 
waves, then our stochastic modification of that equation is also 
meant only to exhibit a trend whereby a certain combination of 
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nonlinearity, dispersion, and stochastic forcing results in a signifi-
cant increase of the probability of rogue waves.

It should be noted that the stochastic NLS has also been exten-
sively studied in diverse applications. For example, in fiber optical 
communications, additive noise has most often been used to model 
the effect of spontaneous emission from amplifiers, as the signal 
propagates in a transmission line (see, e.g., [11]), while multiplica-
tive noise could model the effect of a fluctuating pump in a Raman 
amplifier (see, e.g., [12]). Most of those studies focused on how 
the noise affects a single soliton, although (wavelength-dependent) 
noise and damping were also considered in studies of wave turbu-
lence (see, e.g., [13,14] and references therein).

The model that we consider here is

iut + βuxx + γ |u|2u = −iαu − iεuxxxx + ξ + ηu, (1)

where β , γ are the dispersion and nonlinearity coefficients, α is a 
wavelength-independent damping coefficient, and the term εuxxxx

accounts for the energy loss at very high wavenumbers. In the con-
text of water waves, such a term accounts for transfer of energy to 
very short waves (e.g., via white-capping) that are not resolved by 
the model (see, e.g., a related discussion in [15,16]). Its inclusion 
in the model does not qualitatively affect its predictions but does 
allow us to avoid using a very wide spectral domain and hence 
a very small time step in our numerical simulations. The additive 
and multiplicative noises, ξ and η, are assumed to be complex-
valued, independent of each other, and having zero average and 
the following correlation functions:
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〈ξ∗(x1, t1)ξ(x2, t2)〉 = 2D(|x1 − x2|)δ(t1 − t2), (2a)

〈η∗(x1, t1)η(x2, t2)〉 = 2C(|x1 − x2|)δ(t1 − t2), (2b)

〈ξ(x1, t1)ξ(x2, t2)〉 = 〈η(x1, t1)η(x2, t2)〉 = 0, (2c)

where 〈. . .〉 denotes averaging over an ensemble of noise real-
izations, the asterisk denotes a complex conjugate, and D and C
are real-valued. In time, the noises are treated in the Stratonovich 
sense (see, e.g., Chap. 5 in [17]), whereby their correlation time 
is assumed to be much smaller than any other time scale in the 
model, but still finite.

In space, the noises must have finite (essentially nonzero) cor-
relation lengths because, as we will show below, the spatial scale 
of the solution u is of the same order. A spatially correlated noise 
can be related to a spatially uncorrelated noise w , whose Fourier 
transform satisfies 〈ŵ∗(k1, t1)ŵ(k2, t2)〉 = 2δ(k1 −k2)δ(t1 − t2) and 
〈ŵ(k1, t1)ŵ(k2, t2)〉 = 0, via

{ξ(x, t), η(x, t)} =
∫

G{ξ, η}(k)ŵ{ξ, η}(k, t)e−ikxdk; (3a)

here {. . .} denotes grouping of terms. Then

{D(x), C(x)} =
∫

|G{ξ, η}(k)|2e−ikxdk, (3b)

and the fact that D and C are real implies that |G{ξ, η}(k)|2 are 
symmetric. In what follows we will use notations

D(0) ≡ D0, C(0) ≡ C0. (3c)

In (3a) and everywhere below, if the limits of integration are not 
indicated, they are assumed to be infinite.

Let us note that within the framework of the NLS as a model 
for oceanic waves, a combination of the multiplicative noise and 
damping terms, (−α + η)u, can be interpreted as a result of com-
bined action of the wavelength-independent damping and the forc-
ing due to wind [18–20]. Here (−α) is the net damping rate due to 
both wavelength-independent loss mechanisms and the constant 
part of wind forcing, while η is attributed to the variable part of 
the forcing. In the oceanic waves context, an interpretation of the 
additive noise, ξ , is less clear. However, we include it due to both 
a formal reason explained in the next paragraph as well as for the 
generality of our toy model. It will follow from our results that it 
is the multiplicative noise term that is responsible for the main 
effect reported in this work.

One of our key assumptions is that we consider the evolu-
tion and, in particular, formation of rogue waves in the statistically 
steady state of model (1). (Below we will omit the modifier ‘statis-
tically’ for brevity.) This implies that there must be a balance, on 
average, between the influx of energy to the system due to noise 
and the energy dissipation due to the α- and ε-terms. In linear 
systems, such a balance is well known as a form of the fluctuation-
dissipation theorem, whereby the intensity of noise and the dissi-
pation rate in a steady state must be related (see Eq. (6) below). 
Note that this balance for a nonzero solution u in (1) can only 
be achieved for a nonzero additive noise: if a multiplicative noise 
alone is present, then the solution will either blow up (due to a 
purely linear mechanism) or decay to zero. Thus, if one neglects 
the ε-term for a moment, the constants α, D0, and C0 must be 
related by (6) to guarantee the existence of a steady state. It may 
seem, and perhaps is, unphysical that the damping rate α, which 
is an intrinsic property of the wave model, and the noise inten-
sities D0 and C0, which characterize the noises external to the 
model, are related. A more physical damping mechanism, at least 
for oceanic waves, may be one where energy is dissipated primar-
ily in high wave numbers [13,14]. The reason why we consider the 

situation where almost all energy is lost due to the wavelength-
independent damping is that in this case, it is possible to con-
trol the time-average nonlinearity using some analytical estimates. 
Such a control is required for a careful determination of sources 
that affect our main conclusion.

Let us note that since it is the noise that drives the model into 
the steady state, then the spatial spectral bandwidth of the steady-
state solution must, on average, be on the order of (or greater 
than) that of the noise. This simply follows from the fact that 
terms in (1) must balance out. If the noise contribution to (1) is 
considerably less than that of the nonlinear term, then the spec-
trum of noise can be narrower than the spectrum of the average 
solution. However, it cannot be wider (in the order of magnitude 
sense); indeed, a wide-band noise would excite high wavenumbers 
in the steady-state solution, thereby widening its spectrum. In our 
simulations, we have observed the spectral bandwidths of the so-
lution and the noise to be within a factor of two from one another, 
except for the moments where a rogue wave would form, at which 
point the solution’s bandwidth would considerably exceed that of 
the noise. This is the physical reason why we consider only cor-
related noises, as per (2), in this work. This situation should be 
contrasted to that in optical communications: The noise bandwidth 
there considerably exceeds that of the useful signal, but the signal 
is not in statistical equilibrium with the noise in a telecommunica-
tion system.

The main part of this work is organized as follows. In Sec-
tion 2 we justify the choice of some of the simulation parameters 
that guarantee that the numerical results are statistically signifi-
cant (and yet do not require prohibitively long simulation times). 
The numerical results are reported in Section 3. In Section 4 we 
summarize our findings. Appendices A and B contain auxiliary 
derivations of the mass (a.k.a. number of particles) evolution and 
a brief description of the numerical method.

2. Estimating required simulation time

The probability of a rogue wave occurrence depends on the 
magnitude of the nonlinear term in (1) relative to the other terms. 
Therefore, to convincingly show that that probability is affected by 
noise as opposed to other factors, one must maintain a constant 
average |u|2. This implies maintaining the ensemble average of the 
mass

N =
L∫

0

|u|2dx, (4)

where L is the length of the considered spatial domain. The evolu-
tion equation

d〈N〉/dt = 2(D0L + C0〈N〉 − α〈N〉) (5)

can be derived using the method outlined in Appendix A; here we 
have ignored the action of the ε-term in (1) for reasons that were 
explained in the Introduction. Thus, in the statistically steady state,

〈N〉st = D0L/(α − C0). (6)

In order to have a specific value of 〈N〉 in a simulation, one must 
select values of D0, C0, and α satisfying (6). In this work we have 
always set the parameters so as to maintain the average mass of 
the solution near the value L:

〈N〉 ≈ L ⇒ 1

L

L∫
0

〈|u|2 〉dx ≈ 1. (7)

The next issue one needs to address is: In an individual obser-
vation (simulation), how much does N fluctuate around its aver-
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