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In this work we use the statistical measures of information entropy, disequilibrium and complexity to 
discriminate different approaches and parametrizations for different equations of state for quark stars. 
We confirm the usefulness of such quantities to quantify the role of interactions in such stars. We find 
that within this approach, a quark matter equation of state such as SU(2) NJL with vectorial coupling and 
phase transition is slightly favoured and deserves deeper studies.

© 2014 Published by Elsevier B.V.

1. Introduction

The thermodynamic macro-state of a physical system can be 
constructed from a statistical description of the system under con-
sideration and is generally a function of its internal energy, volume 
and number of particles. Physicists have defined a mathematical 
function that encodes this macro-state and that is valid for all 
states of equilibrium. This function, called entropy, constitutes a 
fundamental quantity of the system and encodes all the thermo-
dynamic knowledge regarding that system. By the mid-end of the 
19th century, Gibbs and Boltzmann examined the meaning of this 
function and suggested a relation to the internal order of the phys-
ical systems. It must be said, however, that this concept of order 
was defined in terms of the number of ways a system can accom-
modate its energy given the internal structure. Hence, metals are 
more orderly than liquids because they have less ways to distribute 
the same amount of energy. See [1] for a review of the concept 
of entropy and its relation to energy and work and how entropy 
drives the evolution of a system.
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Even if the above description seems already very wide, pres-
ently the word “entropy” is employed yet to encode another mean-
ing, related to information, to be defined precisely later on. From 
this point of view we characterize bound structures in terms of 
“missing information”, represented by the Shannon entropy [2]. 
Although the thermodynamic entropy and the Shannon entropy 
share some properties and mathematical relationships, each func-
tion has a different meaning. The Shannon information, formerly 
known as cybernetic information or semiotic information, is actu-
ally an abstract quantity related to messages, independently of the 
form a message is expressed, and is not obviously subject to the 
Second Law of thermodynamics. Actually, one cannot easily con-
vert one into the other, at least in a general situation (but see [3]; 
see below).

Information theory has been applied to natural sciences, spe-
cially molecular biology (see, for example, the textbooks in [4,5]), 
with success to find correlations and patterns among a collection 
of systems of the same type or among different systems that show 
some common features. The quantity to be defined as the infor-
mation content of a system can be related to a somewhat “more 
physical” quantity: the complexity of that system [6]. With the aid 
of this new concept, the hierarchy of white dwarf and neutron star 
types based on different compositions have been studied [7–9]. 
Here we intend to extend this vision, performing the calculation 
of these quantities for neutron stars of different compositions that 
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include different interactions and phases of matter under that ex-
treme conditions, inferring in this way a hierarchy for the equation 
of states based on how these quantifiers change when we change 
the composition of a neutron star.

2. Concepts and definitions

In mathematical terms, we can quantify information by means 
of the probability, pi , of an event to occur. Guided by the math-
ematical properties that such a quantity must have, Shannon [2]
defined information as I = − logb(pi) for some basis b. Later on, 
Shannon developed his information theory with the purpose of 
quantify the information that could be transmitted over a given 
line of communication.

According to these ideas, the average amount of (missing) in-
formation in a stream of N symbols is given by:

I

N
= −K

N∑
i=0

pi logb(pi) ≡ H(p), (1)

where K is a constant that together with the basis b gives us the 
units (b = 2 and K = 1 give us bits; b = e and K = 1 give us nats, 
the units used in this work).

This quantity is defined as the entropy or, better, the informa-
tion entropy of the stream of symbols. The generalization we seek 
should be valid for continuous systems admitting a probability dis-
tribution:

H = −K

∫
p(x) logb

(
p(x)

)
d�x. (2)

In order to apply this concept to physical systems we have to 
define properly what quantity to use as a probability distribution. 
In condensed matter, the momentum and position distributions 
in the phase space or even the atomic number have been used 
[10–14] (these authors used the information entropy in order to 
study the complexity of a system, a concept to be defined below). 
In astrophysics, the first attempts were made to study white dwarf 
stars [7], neutron stars [8] and finally hadronic vs quark stars [9]. 
In all these works it was assumed that the probability distribution 
is proportional to the energy density (or the mass density in the 
non-relativistic case) profile of the star, ε(r), obtained when solv-
ing the equations of structure of the star (in the case of neutron 
stars, the Tolman–Oppenheimer–Volkoff equations, the relativistic 
version of hydrostatic equilibrium). This was justified by the state-
ment that the energy/mass density is related to the probability of 
finding some particles at a given defined location inside the star. 
Even though it may be criticized, it proved difficult to suggest a 
better alternative from the available physical quantities.

Actually, depending on the adopted system of units, the density 
profile can lead us to a “negative” information entropy since the 
density can be greater than one in the log factor. However, in prin-
ciple this should not be surprising: even a normalized probability 
density function like the squared wave function of the quantum 
square potential well would give us a negative information entropy 
if calculated with the above expression (for some specific parame-
ters of the well, of course). It should be noticed that in the works 
quoted above, the authors do not use directly the information con-
tent (the Shannon information) of the system but its exponential. 
This prescription, of the form I ≡ exp(H), is due to Sañudo and 
López-Ruiz in [12] who, in turn, adopted it from [15] (we will see 
that this is a more suitable quantity than H below). In the present 
work we keep the latter and use the following expression to com-
pare the information entropy of the neutron stars:

H ≡ −Kbo

R∫

0

ε(r) ln
(
ε(r)

)
4πr2dr, (3)

where K = 1, b0 = 8.89 × 10−7 km−3, R is the radius of the object 
in km and ln is the natural logarithm. The constant b0 is a prop-
erly chosen quantity that makes the integral dimensionless and is 
related to the system of units used in the density profile. Thus, 
b0 ≡ ε0

c2 M�
, where ε0 = 1 MeV/fm3, c is the speed of light and 

M� = 2 × 1033 g is the mass of the Sun.
In Ref. [9], we have reviewed the complexity and the disequilib-

rium related to the intuitive behaviour of gases, liquids and solids. 
Briefly, simple systems should have low complexity (zero complex-
ity if the system is ideal), defined as

C ≡ I × D = exp(H) × D (4)

where H is the information entropy and the disequilibrium, D , 
quantifies how far the system is from equiprobability, being ex-
pressed by the integral

D ≡ b0

R∫

0

[
ε(r)

]2
4πr2dr. (5)

Following the same reasoning of [6] we can link the informa-
tion content of any system with the information content of two 
extremes of ideal systems with quite opposite descriptions and 
physical properties. These are the ideal gas and the perfect crystal: 
the former can be described by having all its accessible states as 
equally probable, while the latter has a privileged accessible state 
(in the limit of idealization, one accessible state with p = 1 and 
consequently p = 0 for the others).

The crystal has, by definition, minimum (information) entropy, 
while the gas has maximum information content.1

Disequilibrium is, in this approach, a quantity defined to repre-
sent some kind of distance to the equiprobability of the accessible 
states. In other words it represents the information energy [16]. 
Thus, the perfect crystal is at maximum distance of the equiprob-
ability (highest possible disequilibrium) while the perfect gas is at 
equiprobability (disequilibrium equals zero).

If we measure the complexity of some system, and allow its 
proximity to a crystal or a gas to encode the degree of order of 
the system under consideration, then one can wonder what state 
of the system is preferable for Nature to realize. In particular, by 
calculating the information entropy of each star allowed by the 
chosen equation of state, we find a quite univocal behaviour of 
this quantity with the mass and radius of the stars in the stellar 
sequence.

3. The equations of state

To clarify the issue of the composition using these concepts, we 
have compared in Ref. [9] the information entropy, the disequilib-
rium and the complexity for two different sample cases: the quark 
stars constructed from a MIT Bag model equation of state2 (an ad-
mixture of quarks up, down and strange in approximately equal 
amounts, see [17,18]) and hadronic neutron stars from SLy4 equa-
tion of state (neutron rich in the core) [19]. We found that the 
information entropy trend for both cases is pretty much the same 
when viewed as a function of the stellar mass, but differs a lot 
when plotted as a function of the stellar radius.

In that occasion,3 we found that (having in mind what we 
stated in previous section):

1 This is physically grounded to how energy can be distributed among the degrees 
of freedom of the system under consideration.

2 For this model we employed the exact solution for the Einstein equations first 
developed by [20] and effectively calculated by us in [21].

3 The conclusions of Ref. [9], i.e., the range of the masses, should be slightly cor-
rected due to a numerical error later detected in our calculations; we present the 
corrected figures here.
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