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The subject matter of classical thermodynamics is the asymptotic behavior of equilibrium systems in 
thermodynamic limit, for small molecular systems, when transition to thermodynamic limit is impossible, 
the extension of thermodynamics is required. This work studies novel approach for the evaluation of 
partition functions of small systems by complex pole analysis. Several cases for molecular systems in 
small cavities are studied numerically. In particular size-dependent additional pressure for small systems 
is evaluated analytically and numerically. Similar approach was developed earlier in nuclear physics for 
finite systems of nucleons. The obtained results correspond to published experimental data and molecular 
dynamics simulations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The subject matter of classical thermodynamics is the asymp-
totic behavior of equilibrium systems under the assumption, that 
the volume V and the number of particles are large, while the 
ratio of these quantities is finite. The transition to this asymp-
totic behavior is called thermodynamic limit. However, there are 
many systems, which by their physical nature do not permit ther-
modynamic limit. For instance, a gas mixture in a small cavity 
inside solid can behave quite differently depending on the size of 
the cavity. The necessity to extend thermodynamics in order to 
describe non-classical behavior of small equilibrium systems was 
understood long ago [1,2]. The non-classical thermodynamic ef-
fects were identified and studied in different areas of science, like 
chemical physics, biology, and nuclear physics [3–5]. Small sys-
tems can deviate from classical thermodynamics in adsorption and 
droplet formation [6–8], anomalous fluctuations [9,10], breakdown 
of equivalence of statistical ensembles [11–13], and loss of addi-
tive property of thermodynamic potentials [14]. These examples 
demonstrate various phenomena, which require extension of ther-
modynamics beyond thermodynamic limit.

The scientific motivation of the present research is the need 
to improve theoretical understanding of artificial and natural ma-
terials with nanopores, which is expected to lead to quantitative 
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description of such systems. Accordingly a wide range of potential 
applications can be envisaged: from better evaluation of volatile 
components in porous solids to the better control of solid quality. 
In the present work we study several specific features of gas–liquid 
mixtures with small number of molecules occupying finite volume. 
The analysis is performed in the frame of equilibrium statistical 
physics using ideas developed earlier for finite system of nucle-
ons [15]. Also this work is motivated by an outstanding paper [16], 
where extension of standard mean-field theory is developed for 
mesoscopic systems. The authors use the assumption that each 
molecule with multiple degrees of freedom can be represented as a
lattice gas particle with known mean-field solution. In the present 
framework, statistic of single cluster formation is based on Fisher 
droplet model [17]. It is a well known method that contains in-
formation about volume and surface energy. Implementing Fisher 
assumptions for separate clusters we develop statistical theory for 
real mixtures with account of small-size effects. Our results agree 
with previously published experimental and theoretical results, in 
particular, we derive the expression for additional pressure, which 
exhibits oscillations in respect to the pore width [18]. It should be 
noted, that the study of partition sum in the complex plane was 
proposed in [19], as a tool to extend the definition of phase transi-
tions to small systems. These techniques were successfully applied 
to different physical systems [20,21].

Using capillarity assumption only for single cluster we can get 
statistical theory for real system which takes into account proper-
ties of small systems.
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2. Results and discussion

We consider gas–liquid mixture, which contains M chemical 
components, in metastable zone using Fisher droplet model [17]. 
It is assumed, that the mixture is inside small cavity with non-
wetting walls. We use physical units with normalization in respect 
to Planck and Boltzmann constants h̄ = kB = 1. Also we use nota-
tions: m = (mi), is a set of molecular masses of component with 
number i, i = 1, ..., M; N = (Ni) is a set of numbers representing 
actual amounts of different molecules; b = (bi) is a set of volumes 
of molecules, which are assumed close to spherical; μ = (μi) is 
a set of chemical potentials; V , T are volume and temperature 
respectively. Small droplet (cluster) is characterized by set of inte-
gers k = (ki), which are numbers of molecules of different types 
belonging to the cluster. The number of clusters with fixed vec-
tor k is denoted nk , the energies per molecule in the cluster are 
denoted by w = (wi). We use scalar products:

(k,m) =
M∑

i=1

kimi, (k,b) =
M∑

i=1

kibi,

(k,μ) =
M∑

i=1

kiμi, (k, w) =
M∑

i=1

ki wi .

The one-component case M = 1 was recently considered in [22].
Under the assumptions of Fisher droplet model the partition 

function for a single cluster can be calculated as following

qk = V fk = V

(
mk T

2π

)3/2

e− φk
T . (1)

Here mk = (k, m) is droplet mass, φk = (36π)1/3σ × (k, b)2/3 −
(k, w) is droplet potential energy, σ is surface energy. If the mix-
ture is described as an ideal gas of clusters, then in the frame of 
canonical ensemble (CE) the partition function can be calculated as 
following

Q (V , T , N) =
∏

k

∑
nk

qnk
k

nk! δ
(

N −
∑

k

knk

)
(2)

with Dirac delta-function providing molecular balance condition 
N = ∑

k knk .
Evident limitations of the model (1), (2) arising from the ideal 

gas approximation can be remediated by the following corrections. 
First, one can take account of non-zero volume of clusters by the 
following substitution in Eq. (1):

V → V eff = V −
∑

k

(k,b)nk. (3)

Second, one can introduce geometrical restrictions on the size of 
the cluster by additional condition (k, b) ≤ K (V ) in the partition 
function expression (2). Here the volume-dependent function K (V )

implicitly characterizes the actual geometry of the cavity or pore 
with volume V . It is possible, that K (V ) is constant, if there is size 
restriction in certain direction, for example, for the parallelepiped 
cavity with one size being fixed and two others being arbitrary.

After these modifications the CE partition function has the fol-
lowing form

Q (V , T , N) =
(k,b)≤K (V )∏

k

∑
nk

( fk V eff)
nk

nk!

× δ

(
N −

∑
k

knk

)
Θ(V eff) (4)

with Heaviside function Θ providing geometrical restriction on the 
number of clusters 

∑
k(k, b)nk ≤ V . The direct calculation of the 

partition function is complicated because of the overlapping con-
straints on the cluster size, number of clusters and number of 
molecules. The way to overcome this difficulty was developed in 
nuclear physics [15], where similar problems are encountered for 
the finite systems of nucleons. The first step is the transition from 
CE to grand canonical ensemble (GCE), which removes restriction 
on the number of molecules. Let us point out that our approach 
with GCE is based on the assumption, that while we consider a 
finite-size void, we still assume the mixture to be an open system. 
For example, there can be molecular exchange with external reser-
voir via molecular-size defects in the walls. The CE approach for 
closed system could lead to different results. The example of such 
discrepancy between CE and GCE was demonstrated in [23].

The CE partition function is replaced by the following GCE par-
tition function

Ξ(V , T ,μ) =
∑

N

Q (V , T , N)exp
(μ, N)

T

=
(k,b)≤K (V )∏

k

∞∑
nk=0

[ fk V eff exp (k,μ)
T ]nk

nk! Θ(V eff) (5)

The second step is the Laplace transform of the GCE partition 
function in respect to the volume V , which helps to deal with in-
terconnected volume and cluster restrictions

Ξ̂(λ, T ,μ) =
∞∫

0

dV e−λV Ξ(V , T ,μ) (6)

Once the Laplace transform (6) is known, it is possible to recon-
struct the partition function (5) by inverse Laplace transform

Ξ(V , T ,μ) = 1

2π i

χ+i∞∫
χ−i∞

dλeλV Ξ̂(V , T ,μ) (7)

Here the integration path must be chosen to lie at the right side of 
integrand singularities λn , n = 0, 1, 2, . . ., which are simple poles 
usually. These poles satisfy the equation

λ = Φ(λ, V , T ,μ) =
(k,b)∑

k

fk exp
(k,μ) − (k,b)T λ

T
(8)

Calculating the sum of residues over the poles in (7) we arrive at 
the following result

Ξ(V , T ,μ) =
∑
λn

eλn V
(

1 − ∂Φ(λn)

∂λ

)−1

(9)

While the expression (9) for the GCE partition function is derived 
analytically, the actual computation of the poles λn and the sum 
(9) is done numerically with specific values of the governing pa-
rameters. The practical usefulness of this approach comes from the 
fact that in some cases the summation over small number of poles 
in (9) is sufficient to provide effective approximation for the par-
tition function with clear physical interpretation. Let us consider 
this issue in more detail.

Let us introduce real Rn and imaginary In parts of the poles 
λn = Rn + i In . We enumerate poles in a such way, that n = 0 cor-
responds to the only real solution λ0 = R0 with a largest real part 
value R0 > Rn>0. All other poles possess non-zero imaginary parts 
and complex conjugate doubles. In accordance with (9) the poles 
are parametrically dependent on V , T , μ. Typical distribution of 
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