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A linearized variant of relative entropy is used to quantify in a unified scheme the different kinds of 
correlations in a bipartite quantum system. As illustration, we consider a two-qubit state with parity and 
exchange symmetries for which we determine the total, classical and quantum correlations. We also give 
the explicit expressions of its closest product state, closest classical state and the corresponding closest 
product state. A closed additive relation, involving the various correlations quantified by linear relative 
entropy, is derived.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum entanglement in quantum systems, comprising two 
or more parts, constitutes a key concept to distinguish between 
quantum and classical correlations and subsequently to understand 
quantum–classical boundary. Besides its fundamental aspects, en-
tanglement is commonly accepted of paramount importance in 
the development of quantum information science [1–6]. In fact, 
entangled states have found various applications in quantum in-
formation processing protocols as for instance quantum cryptog-
raphy [7], quantum teleportation [8], quantum dense coding [9]. 
Nowadays, entanglement is recognized as a valuable resource in 
several communication and computational tasks [10–12]. In view 
of these remarkable realizations and implementations, the concept 
of entanglement is expected to have many other implications and 
applications in other areas of research, especially condensed mat-
ter physics.

Therefore, the quantification and the characterization of quan-
tum correlations between the components of a composite quan-
tum system have attracted a special attention during the last 
two decades. The experimental and theoretical efforts, deployed 
in this context, are essential to develop the appropriate strategies 
to prevent against the decoherence effects induced by the system-
environment coupling (see for instance the recent works [13–15]
and references therein). Different measures were introduced from 
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different perspectives and for various purposes [16–22]. Probably 
the most familiar among them is the quantum discord [23,24]
which goes beyond the entanglement of formation [25,26]. It is 
given by the difference of total and classical correlations existing 
in a bipartite system. Now, it is well understood that almost all 
quantum states, including unentangled (separable) ones, possess 
quantum correlations. However, the analytical evaluation of quan-
tum discord requires extremization procedures that can be tedious 
to achieve [27–34]. To overcome this difficulty, a geometrical ap-
proach was proposed in [35]. It is based on the Hilbert–Schmidt 
norm in the space of density matrices. This measure provides 
explicit analytical expressions for pairwise quantum correlations. 
Clearly, Hilbert–Schmidt norm is not the unique distance which 
can be defined in the space of quantum states. Several distances 
are possible (trace distance, Bures distance, etc.) with their own 
advantages and drawbacks and each one might be useful for some 
appropriate purpose [36–39].

The states of any multipartite quantum system can be clas-
sified as being classical, quantum–classical and quantum states. 
Subsequently, the correlations can also be categorized in total, 
quantum, semi-classical (related to quantum–classical states) and 
classical correlations. This classification requires a specific measure 
(entropic or geometric distance) to decide about the dissimilarity 
between a given quantum state and its closest one without the de-
sired property and to provide a consistent scheme to treat equally 
the different correlations. In this sense, using the relative entropy, 
an approach unifying the correlations in multipartite systems was 
recently developed in [40]. In particular, a very significant and in-
teresting additivity relation was reported (D + C = T + L). It states 
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that the sum of quantum D and classical C correlations is equal 
to the sum of total mutual correlations T and another quantity L
that is exactly the difference between D and the quantum discord 
as originally introduced in [23,24].

However, it must be noticed that, despite its theoretical in-
formation meaning, the relative entropy is not symmetric in its 
arguments and therefore cannot be considered as a true metric 
distance. In the other hand, from an analytical point of view, the 
derivation of closed expressions of relative entropy based measures 
involves optimization procedures that are in general very com-
plicated to perform. In this respect, a purely geometrical unified 
framework to classify the correlations in a given quantum state 
was discussed in [41,42]. Using the Hilbert–Schmidt norm and 
paralleling the definition of the geometric discord, the geometric 
measures of total and classical correlations in a two qubit system 
were derived in [41,42]. In contrast with the relative entropy, the 
additivity relation of the type (D + C = T + L) is not, in general, 
satisfied.

In this paper, we introduce a linearized variant of relative en-
tropy. We obtain the explicit analytical expressions of quantum 
and classical correlations in a two qubit system. The relation with 
the geometric measure based on Hilbert–Schmidt norm is estab-
lished. We show that the linear relative entropy provides us with 
a simple approach to treat the different kinds of bipartite cor-
relations in a common framework. This approach can be seen, 
in some sense, interpolating between the relative entropy-based 
[23,24] and Hilbert–Schmidt-based [41,42] classification schemes. 
More specifically, it provides us with a very simple way to perform 
the optimizations required in deriving closest product, classical and 
classical product states. We also show that the correlations satisfy 
a closed additivity.

This paper is organized as follows. In Section 2, we decompose 
the linear entropy in symmetric and anti-symmetric parts. We 
show that the antisymmetric part is related to quantum Jensen–
Shannon divergence and the symmetric part is exactly the Hilbert–
Schmidt distance [41]. Using the linear relative entropy, we obtain 
a closed additivity relation of the various bipartite correlations ex-
isting in a two qubit system. A comparison with Hilbert–Schmidt 
based approach is also investigated. As illustration, we consider, in 
Section 3, a bipartite system possessing the parity symmetry and 
invariant under qubits permutation. In this situation, the explicit 
derivations of the suitable closest product and classical states is 
achieved. The analytical expressions of total, quantum and classical 
correlations are obtained and the additivity relation is discussed. 
Concluding remarks close this paper.

2. Correlation quantifiers based on symmetrized linear relative 
entropy

2.1. Correlation quantifiers based on relative entropy

The relative entropy offers the appropriate scheme to unify the 
different kinds of correlations existing in multipartite systems [40]. 
It is the quantum analogue of the Kullback–Leibler divergence be-
tween two classical probability distributions and characterizes the 
dissimilarity between two quantum states. The relative entropy de-
fined by

S(ρ‖σ) = −Tr(ρ logσ) − S(ρ), (1)

constitutes a quantitative tool to distinguish between the states 
of a given degree of quantumness and gives the distance be-
tween them according to the nature of their properties (S(ρ) =
− Tr(ρ logρ) is the von Neumann entropy). For a bipartite system, 
the total correlation T = S(ρ‖πρ) is quantified by the relative en-
tropy between a state ρ and its closest product state πρ = ρA ⊗ρB , 

where ρA and ρB denote the reduced density matrices of the sub-
systems. It writes as the difference of the von Neumann entropies 
[40]

T = S(ρ‖πρ) = S(πρ) − S(ρ). (2)

Similarly, the quantum discord, which encompasses quantum cor-
relations, is measured as the minimal distance between the state 
ρ and its closest classical state

χρ =
∑
i, j

pi, j|i〉〈i| ⊗ | j〉〈 j|, (3)

where pi, j are the probabilities and {|i〉, | j〉} local basis. It writes 
also as the difference between the von Neumann entropies of the 
states ρ and χρ [40]

D = S(ρ‖χρ) = S(χρ) − S(ρ). (4)

The classical correlation gives the distance between the closest 
classical state χρ and its closest classical product state πχρ . It 
coincides with the difference of von Neumann entropies of the rel-
evant states

C = S(χρ‖πχρ ) = S(πχρ ) − S(χρ). (5)

In this approach the relative entropy-based quantum correlations 
or quantum discord D (4) does not coincide with the original def-
inition of discord introduced in [23,24]. The difference is given by 
[40]

L = S(πρ‖πχρ ) = S(πχρ ) − S(πρ). (6)

The entropy-based correlations T , D , C and L are expressed as dif-
ferences of von Neumann entropies (Eqs. (2), (4), (5) and (6)) and 
they satisfy the following remarkable additivity relation [40]

T − D − C + L = 0. (7)

It must be emphasized that the relative entropy (1) is not sym-
metric under the exchange ρ ↔ σ . In this respect, it cannot define 
a distance from a purely mathematical point of view. Moreover, 
as mentioned above, the analytical evaluation of relative entropy-
based correlations requires intractable minimization procedures. To 
avoid this problem, the linear relative entropy offers an alternative 
way to get computable expressions of correlations existing in mul-
tipartite systems [41].

2.2. Linear relative entropy

The linear entropy

S2(ρ) =̇ 1 − Tr
(
ρ2)

is related to the degree of purity, P = Tr(ρ2), and therefore reflects 
the mixedness in the state ρ . It is defined as a linearized variant 
of von Neumann entropy by approximating logρ by ρ − I where I
stands for the identity matrix. Accordingly, the relative entropy (1)
can be linearized as follows [41]

Sl(ρ1‖ρ2) = Trρ1(ρ1 − ρ2). (8)

It is not symmetric under the interchange of the states ρ1 and ρ2. 
To define a symmetrized linear relative entropy, Sl(ρ1‖ρ2) is de-
composed as the sum of two terms: symmetric and antisymmetric. 
The symmetric part is defined by

S+(ρ1‖ρ2) = Sl(ρ1‖ρ2) + Sl(ρ2‖ρ1). (9)

The antisymmetric term is given by
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