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Effect of a minor concentration of the energetic particles on GAM spectrum in a tokamak is analyzed by 
drift kinetic theory taking into the account the electron current and diamagnetic drift. A novel method 
of Jacobi functions is applied to solve the drift kinetic equation for the energetic bounce particles in the 
limit of high bounce frequency in comparison with the GAM frequency. Using the Q -asymptotic of Jacobi 
function, it is shown that the energetic minority ions can form the continuum minimum/maximum at the 
NB or ICR power deposition maximum where the geodesic eigenmode may be excited. In this case, the 
electron current modeled by shifted Maxwell distribution overcomes the ion Landau damping threshold 
thus resulting in the GAM instability.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Typically, a minority concentration of energetic ions may ap-
pear during the neutral beam (NB) and/or ion cyclotron resonance 
(ICR) heating in all modern tokamaks, where discharges are fre-
quently accompanied by the Geodesic Acoustic Mode (GAM) in-
stability [1–4], which may have strong effect on plasma confine-
ment [5]. Presence of the energetic particles is also expected in 
the future fusion reactor (ITER). Theoretically discovered GAM os-
cillations [6] have the N = 0 axisymmetric toroidal mode struc-
tures with M = 0, ±1 poloidal mode numbers, which were con-
firmed by reflectometry measurements [3], and the M = ±2 mode 
structure is also visible in magnetic probe measurements [1,2,4]. 
The GAM spectrum is calculated in kinetic approximation in se-
ries of works [7–11] and the modes are subdivided into relatively 
high frequency mode ω2

G ≈ (7Ti/2 + 2Te)/R2
0mi and ion-sound 

mode ω2
si ≈ Te/R2

0q2mi [10,11], where R0 is major radius, q is 
safety parameter, Te,i electron and ion temperatures. Recently, the 
semi-numerical theory of the GAM instability driven by energetic 
trapped beam ions [12] has been developed, that is later confirmed 
in numerical calculations [13] of the instability driven by a bal-
anced beam. These instabilities are produced by perturbations of 
the ion equilibrium distribution in the velocity space. The theoret-
ical analysis [14] demonstrates that the GAM spectrum does not 
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changed for the frequency above the ion bounce resonance fre-

quency ω2
G �

√
εTe/2R2

0q2mi of the main ions in the large aspect 
ratio tokamak ε = r/R0 � 1, but the modes practically disappear 
in the frequency band below the bounce frequency. It will be in-
teresting to extend a theory of the bounce particle effect on the 
GAM spectrum in the case of the energetic ions minority.

Here, it is proposed to analyze the effect of the minor con-
centration of the energetic bounce particles on GAM spectrum 
in a tokamak by drift kinetic theory taking into the account the 
electron current and diamagnetic drifts. A novel method of Ja-
cobi functions [15] adopted for the calculation of the electron 
wave dissipation [16] in tokamaks is applied to solve the drift ki-
netic equation for the energetic particles (Th � Ti ) in the limit 
of the higher bounce frequency in comparison with the GAM one, 
ω2

G �
√

εTh/2R2
0q2mi . The dispersion relation for GAM type modes 

is obtained by averaging the divergence of Ampere equation over 
the magnetic surface and, as a result, the balance of the radial cur-
rent jrp + jr0 = 0 is used where jrp is the polarization current and 
jr0 is the averaged value of the geodesic current.

2. Dispersion equation

To find the GAM dispersion for the toroidal mode number 
N = 0, the drift kinetic approach is employed in the quasi-
toroidal coordinates (r, ϑ, ζ ) for the large aspect ratio tokamak 
ε = r/R0 � 1, where the circular surfaces (R = R0 + r · cos θ , 
z = r · cos θ ) are formed by the magnetic field with toroidal and 
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poloidal components, Bζ = B0 R0/R , Bϑ = rBζ /qR0 with Bθ � Bξ . 
A perturbed distribution function for each species (electron, cold 
and hot ions α = e, i, h) driven by the radial Er = E1 sin ϑ and par-
allel E3 = Es sin ϑ + Ec cosϑ oscillating electric fields ∝ exp(−iωt)
can be found from the drift kinetic equation where the dimension-
less variables (u, λ) are used in the velocity space

w
∂ f

∂ϑ
− iΩα f = eαqR

mα
Fα

[
w E3

v2
Tα

+ 2 + ηα(u2 − 3)

2v Tαωcαdr
E2

− u2 (2 − λ + ε(2 + λ) cosϑ)

2Rωcα v Tα
E1 sinϑ

]
. (1)

Here w‖ = su
√

1 + ε cos ϑ − λ is the parallel velocity with s = ±1, 
u = v/v T is the module of the normalized velocity, as an equiv-
alent to the energy variable, λ is the dimensionless magnetic 
moment, v2⊥B0/v2

T B; ωcα = eB/cmα and Ωα = ωR0q/v Tα are the 
cyclotron and normalized wave frequencies, v Tα = √

Tα/mα is 
thermal velocity, Fα is the Maxwell distribution of the α-specie, 
∂nα/∂r = −nα/dα , and is the density gradient of the ions. Poten-
tial approach is assumed for the parallel and binormal electric field 
that impose relation E2 = E3/hϑ where hϑ = Bϑ/B0 is the mag-
netic field inclination.

To obtain the GAM dispersion the oscillating density compo-
nents are presented as the sum n(α) = n(α)

s sin ϑ + n(α)
c cosϑ . Fur-

ther, the sin or cosϑ-density components and jr0-current will be 
obtained integrating the solution of Eq. (1) in the velocity space 
(u, λ) and over ϑ

n(α)
s,c =

∞∫
0

v3
Tαu2du

∮ {cos ϑ}︷︸︸︷
sinϑ dϑ

∑
s=±1

1+ε cos ϑ∫
0

f s,αdλ√
1 + ε cosϑ − λ

;

jαr = eα v3
Tα

∞∫
0

u2du

∮
dϑ

∑
s=±1

1+ε cos ϑ∫
0

Vr fs,αdλ

2
√

1 + ε cosϑ − λ

where integration should be performed over the trapped 1 − ε ≤
λ ≤ +ε cos ϑ and untrapped 0 ≤ λ ≤ 1 − ε regions separately. Fi-
nally, quasi-neutrality will be used for each component.

First, we begin to treat Eq. (1) changing the variable from λ
to the new κ-variable for the untrapped κ2 = 2ε/(1 + ε − λ) and 
trapped particles κ̂2 = (1 + ε − λ)/2ε. In the untrapped equation, 
the Jacobi functions [15] sin ϑ/2 = sn(κ, x), cos ϑ/2 = cn(κ, x) with 
the Jacobi variable [16] ϑ/2 = am(κ, x) are introduced that trans-
forms Eq. (1) to the form

∂ fun

∂x
− √

2is
Ω fun

u
√

ε
+

√
2seαquFα(κ2 + 2ε − Hκ2)√

εωcαmα v Tακ

× E1 sn(κ, x) cn(κ, x)

= 4eα RqFα

mα v2
Tα

[
Es sn(κ, x) cn(κ, x) − Ec

(
sn(κ, x)2 − 1/2

)]
× dn(κ, x) (2)

where H = (2 + u2η − 3η)R0 Es/(u2dαhϑ E1) and the drift term 
driven by the Ec-field is ignored. Expanding Jacobi functions in 
the Q -series [15] and using the periodic boundary conditions at 
x = ±K (κ), we get the solution of Eq. (2) induced by the E1 and 
Es-fields

f (α)
1,un = i

2
√

2πqeα Fα E1√
εωcαmα v Tα

N∑
p=1

(κ2 + 2ε − Hκ2)Q pu2 �

Ωα,p

K (κ)κ3(1 + Q 2p)(u2 − �

Ω2
αp)

× sin

(
π px

K (κ)

)
(3a)

and driven by Ec-parallel field where few necessary terms of the 
expansion may be kept

f (α)
c,un = eα RqFα Ec

mα v2
Tα

4∑
p=1

4u2 Q p

p(u2 − �

Ω2
α,p)

[
1

(1 + Q 2p)

+ π2(p2 − 4Q − (2 − p)Q 2 − 4p(4 − p)Q 3)

K (κ)2κ2

]

× sin

(
π px

K (κ)

)
(3b)

where 
�

Ωp,α = ωR0qκ K (κ)/pπ
√

2εv Tα , Q = [1 − (1 − κ2)1/4]/2
[1 + (1 − κ2)1/4], and K (κ) is the first kind elliptic integral. The 
cosϑ-part of the drift oscillations has no effect on the density 
or radial current oscillations due an antisymmetric distribution 
in the velocity space (s = ±1), but the solution f (α)

s,un with drift 
term driven by the Es sin ϑ-field component is important. To cal-
culate the n(α)

s,c -density oscillation, integration of Eqs. (3a), (3b)
have to be done in the velocity space (u, κ ) and over ϑ follow-
ing to procedure of Ref. [16]. It is easy to perform the integra-
tion over the u-variable accounting bounce resonances that pro-

duces expressions via the dispersion function Z = ∫ ∞
−∞ dt exp(−t2)

(t−x)

where x =
�
Ωp,α√

2
depends from κ K (κ), but the final κ-integration 

is only possible to perform numerically that involves specific toka-
mak parameters [12]. To proceed with analytical calculations, it 
is assumed that the hot ions have the bounce frequency larger 
than the GAM frequency and the main ions are cold. In this 
case, using expansion over parameter Ωh/

√
2ε � 1 and taking 

into account the order O (1/
√

ε) in Eq. (3) for the hot minority 
ions, we get the sin ϑ-component of the ion density oscillations 
and ϑ-averaged radial current after integration over velocity space 
(u, κ) and over ϑ

n(h)
un = ehn0rhq

mh v T h

(
0.56

iΩh E1√
εωch

+ R0 Ec

v T h

)
sinϑ, (4)

〈
j(h)
un

〉 = −e2
hn0rhq

mhωch

{
ρhΩh√

εR0

[(
0.4i − 0.25

Ω5
h

ε5/2

)
E1

−
(

0.27i + 0.06(3ηh − 2)
Ω3

h

ε3/2

)
R0 Es

dhhϑ

]

+
(

1 + 0.23i
Ω5

h

ε5/2

)
Ec

}
(5)

where ρh = v T h/ωch is Larmor radius, rh is the relative density 
of the hot ions. Due to the used expansion, it is obvious that 
the dissipative (real) part of the current in Eq. (5) driven by E1
and Ec-components is relatively small in comparison with the 
Es-component that also has the small value ∝ 0.06Ω3

h /ε3/2 � 1. It 
should be noted that the number of decimal digits in coefficients 
corresponds to the 2% accuracy in numerical integrations over κ
in all calculations of the density and current. The hot density in 
Eq. (4), as well for trapped ions, produces the small effect on the 
final GAM dispersion to have the order of O (r2

h Ti/Th), which is 
not taken into account, and the dissipative part is not shown to be 
similar to Eq. (5).

For the main ions, which the bounce frequency smaller then 
the GAM frequency v T h

√
2ε � ωqR0, the fluid solution with the √

ε-corrections is found to be similar [14]

n(i)
un = − ein0q

mi v T i

[(
2 + 4

Ω2
i

− 1.4
√

ε

)
iE1

ωciΩi

+ R0 Ec

v T iΩ
2
i

]
sinϑ, (6a)
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