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In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical 
study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. 
Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the 
regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the 
evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets 
having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and 
prolongs the burnout time.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Evaporation of liquid droplets has a wide range of industrial ap-
plications, such as spray combustion [1–3], liquid fuel preparation 
[4,5], and spray drying [6]. One of the simplifications in droplet 
evaporation simulation is that of droplet sphericity. Most of the 
current theoretical models were developed for a spherical droplet. 
However, a non-static droplet tends to deform especially at high 
value of Reynolds number [7,8]. Experiments and numerical stud-
ies show that the oblate spheroid is a proper shape-approximation 
for a droplet [9,10]. Since the spheroidal droplet cannot possess 
the unique point-symmetry of the spherical droplet, the surface 
area and the species mass flux distribution along the droplet sur-
face are greatly influenced by the droplet shape.

A few of theoretical investigations have been carried out to de-
velop the non-spherical droplet evaporation models. Ignoring the 
Stefan flow, Grow [11] proposed an integral expression of the sur-
face mass flux for a prolate spheroid under steady-state conditions. 
Based on Grow’s work [11], Gera et al. [12,13] defined a shape-
influenced factor that accounts for the effect of non-sphericity on 
the mass evaporation rate. The factor was calculated by solving 
the ratio of the average vapor flux to that for the spherical droplet 
having the same surface area. In their studies, the diameter of a 
sphere with equal external surface area was chosen as the equiv-
alent diameter. The shape-influenced factor was further developed 
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by Yin et al. [14], in which a simple algebraic shape-influenced 
factor was proposed to replace the existing complex integral ex-
pression. Their investigations [14–16] treated the diameter of an 
equal-volume sphere as the equivalent diameter.

It can be seen that although the droplet evaporation models for 
a non-spherical droplet have been conducted and developed, the 
current models still have some problems. (a) The Stefan flow at 
the droplet surface is ignored. (b) The droplet evaporation model 
for a spheroidal droplet contains an integral term, which is rather 
complicated for engineering application. (c) The proposed models 
are only applicable to a prolate spheroid rather than an oblate 
spheroid, which cannot apply to the droplet evaporation. (d) The 
theoretical expressions are restricted to the case of a droplet under 
static conditions. Actually, the relative motion between the droplet 
and flow cannot be neglected in many areas of engineering science. 
Thus, efforts for mathematical improvements with detailed treat-
ments are needed to obtain a more accurate evaporation model 
for an oblate spheroid droplet.

In this study, the influences of convective mass transfer and 
Stefan flow are taken in consideration. Fully algebraic solutions 
for the droplet evaporation rate in the spheroidal regime are ob-
tained. To avoid the mathematical and computational complica-
tions, the following assumptions for a droplet evaporating are 
invoked. (a) The droplet shape is described as oblate spheroid 
along with the evaporation process. Dynamic evolution processes 
of droplet, such as breakup, collision, and coalescence are not in-
cluded in this study. (b) A series of concentric spheroids constitute 
isothermal surface cluster and isoconcentration surface cluster of 
droplet. (c) The physical properties (density, thermal conductivity, 

http://dx.doi.org/10.1016/j.physleta.2014.10.020
0375-9601/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2014.10.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:leejay1986@163.com
http://dx.doi.org/10.1016/j.physleta.2014.10.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.10.020&domain=pdf


3538 J. Li, J. Zhang / Physics Letters A 378 (2014) 3537–3543

Nomenclature

a, b, c semi-axes of spheroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
A droplet surface area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m2)
B f pre-exponential factor . . . . . . . . . . . . . . . . . . . (g/(m2 s Pa))
cpg specific heat of vapor . . . . . . . . . . . . . . . . . . . . . . . . (J/(kg K))

d diameter of a spherical droplet with the same 
volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)

d0 initial diameter of a spherical droplet with the same 
volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)

D diffusion coefficient of gas species . . . . . . . . . . . . . (m2/s)
E f activation energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (KJ/mol)
ex, ey, ez Cartesian coordinate unit vectors . . . . . . . . . . . . . . . . (m)
g mass flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg/(m2 s))
G mass flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg/s)
H scale factor
k mass transfer coefficient . . . . . . . . . . . . . . . . . . . . . . . . (m/s)
L f specific latent heat of vaporization . . . . . . . . . . . . . (J/kg)

mk droplet mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg)
mk0 initial droplet mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg)
M droplet aspect ratio
M0 initial droplet aspect ratio
n unit vector outward normal to spheroid surface . . (m)
Nu Nusselt number
Nu0 Nusselt number in a stagnant environment
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (MPa)
Pr Prandtl number

r radius of a spherical droplet with the same surface 
area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)

R universal gas constant . . . . . . . . . . . . . . . . . . . . (J/(kmol K))

Rek Reynolds number
Sh Sherwood number
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s)
T temperature of concentric spheroid droplet . . . . . . . (K)
Tb droplet boiling point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (K)
x, y, z Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
Y mass fraction

Greek symbols

θen shape-influenced factor
λg thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . (W/(m K))

ξ, η, ζ ellipsoidal coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
Π surface of concentric spheroid
ρ gas density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg/m3)

ρl droplet density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg/m3)

ψ droplet sphericity

Subscripts

f fuel vapor
s surface
sp sphere
sup equivalent film boundary
∞ surrounding environment

and specific heat) are assumed to be constant in evaporation. Al-
though the physical properties at the droplet surface differ from 
those in the surrounding environment, this assumption allows a 
simple closed-form solution.

2. Droplet evaporation models

2.1. Mass-transfer controlled regime

2.1.1. Species conservation and total flow rate
With the assumption of quasi-steady conditions, the species 

conservation for the vapor can be written as

g f = −ρD
∂Y f

∂n
+ g f Y f , (1)

where g f , Y f , n represent the vapor mass flux, the vapor mass 
fraction, and the outward unit normal vector, respectively. The first 
term on the right-side expression is the diffusional flux of vapor 
determined by Fick’s law, and the second term is the mass flux of 
vapor associated with molecular diffusion.

The total mass flow rate, or the mass evaporation rate, is de-
fined as the integral of the mass flux along the spheroid surface:

G =
¨

Π

g f ds, (2)

where the integral surface Π denotes the spheroid surface.
Since the oblate spheroid is a possible approximation for the 

shape of non-spherical droplet in many applications, it is con-
venient to use the ellipsoidal coordinates. The equation x2/a2 +
y2/b2 + z2/c2 = 1 denotes an ellipsoid in a Cartesian coordinate 
system [17]. An oblate spheroid is an ellipsoid of revolution gen-
erated by rotating an ellipse about its minor axis. The aspect ratio 
M is defined as the ratio of the length projected on the symme-
try axis to the maximum length normal to the axis. M is the ratio 

of axes for a spheroid, with M < 1 for an oblate spheroid. The 
ellipsoidal coordinates (ξ , η, ζ ) are produced from the Cartesian 
coordinates (x, y, z) using the expressions as

x2 = (a2 + ξ)(a2 + η)(a2 + ζ )

(a2 − b2)(a2 − c2)
, (3a)

y2 = (b2 + ξ)(b2 + η)(b2 + ζ )

(b2 − a2)(b2 − c2)
, (3b)

z2 = (c2 + ξ)(c2 + η)(c2 + ζ )

(c2 − a2)(c2 − b2)
. (3c)

The formula x2/(a2 + ξ) + y2/(b2 + ξ) + z2/(c2 + ξ) = 1 represents 
a series of concentric ellipsoids when ξ = constant, and ξ = 0 cor-
responds to the ellipsoid surface.

With the aid of the ellipsoidal coordinates, the vapor mass frac-
tion gradient along the coordinate ξ can be expressed as (see 
Appendix A)

∂Y f

∂n
= 2

H

∂Y f

∂ξ
, (4)

where

H =
[(

x

a2 + ξ

)2

+
(

y

b2 + ξ

)2

+
(

z

c2 + ξ

)2]1/2

. (5)

Thus the mass evaporation rate is then

G = 8πρD

Y f − 1

(
a2 + ξ

)1/2(
b2 + ξ

)1/2(
c2 + ξ

)1/2 ∂Y f

∂ξ
. (6)

2.1.2. Film theory
In many industrial apparatus, droplets seldom experience the 

creeping flow. There is always relative velocity between the droplet 
and the free stream. The concept ‘film theory’, as an approximate 
approach in chemical engineering, has been extensively used to 
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