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We propose a toy model to describe in the frame of Mode Coupling Theory multiple glass transitions. The 
model is based on the postulated simple form for static structure factor as a sum of two delta-functions. 
This form makes it possible to solve the MCT equations in almost analytical way. The phase diagram is 
governed by two swallow tails resulting from two A4 singularities and includes liquid–glass transition 
and multiple glasses. The diagram has much in common with those of binary and quasibinary systems.

© 2014 Published by Elsevier B.V.

A large number of papers studying the liquid–glass transition 
have been published during last decades. They include results of 
real experiments, computer simulations and various theoretical ap-
proaches. Nowadays, the most popular and the most cited of the 
various theories of glasses are based on the mean-field replica ap-
proach [1] and the so-called Random First Order Transition theory 
(RFOT) [2–4], both based on analogies with the well-developed 
equilibrium statistical mechanics of spin glasses. However, numer-
ous results were obtained in the framework of the Mode Coupling 
Theory (MCT) (see, e.g., the pioneering work [5], the reviews [6,
7], and also a detailed presentation in the recent monograph [8]). 
The most important drawback of mean-field dynamics and MCT is 
that the MCT transition it describes is not observed in real mate-
rials. MCT cannot be used to describe viscosity data close to the 
experimental glass transition T g , since it does not even predict 
thermally activated behavior. Worse, MCT predicts a transition at 
which the system freezes completely: not only a fraction of the 
density fluctuations get frozen but also self-diffusion gets arrested 
[9]. Although now the investigations of dynamical heterogeneities 
(see e.g. [4,10]) in glassy systems favor the modifications of MCT, 
one can affirm that it was for a long time the only consistent the-
ory describing details of the transitions in supercooled liquids. It is 
now recognized that the MCT transition must be interpreted as an 
approximate theory of a crossover taking place in the dynamics. In 
the present paper we remain in the framework of the traditional 
MCT.

* Corresponding author.

The MCT was first used to describe the transition to the glass 
state in the system with the hard-core potential in [5] and then 
in a large number of various systems. Its applicability was con-
firmed experimentally and in computer simulations (see [6–8,
11]). A major achievement of MCT is the possibility to apply the 
same formalism to different materials and theoretical models, ba-
sically starting from the microscopic interactions between atoms 
and molecules. At the same time, papers where the possibility of 
describing the glass–glass transition for certain potentials in the 
MCT framework have recently appeared: in this case, the glass 
characterized by the nonergodicity parameter f (1)

q transforms into 
another glass with the nonergodicity parameter f (2)

q . Such a tran-
sition was predicted for systems with a potential consisting of a 
solid core and a very narrow and deep attractive well [12–15]. 
In this case, at high temperatures the first glass state is deter-
mined by repulsion as for the system of hard spheres, while 
the second glass state exists at low temperatures and is deter-
mined by attraction. It is the competition between these two states 
that determines the glass–glass transition. The glass–glass transi-
tion line continues the low-temperature liquid–glass transition line 
smoothly to the glass region and ends at a third-order bifurcation 
point [12–15]. It was shown that A4 singularity [16–18] usually 
accompanies the glass–glass transition [19,20].

Another class of systems with two characteristic length and, 
so, with the possibility of glass–glass transition is presented by 
binary and quasibinary systems. Mixtures of hard spheres are com-
monly used as simple model systems with slow dynamics avoiding 
crystallization. Binary hard spheres were considered in the frame 
of MCT approach in a number of papers (see, e.g. [21–23]) and 
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phase diagrams containing multiple glasses were obtained. Now, 
a quasibinary system of hard spheres with an additional repul-
sive step in the potential (so-called square-shoulder, or collapsing 
spheres system) is also in the focus of interest. This system and 
its smoothed versions were widely studied [24–29]. It was shown 
that a series of unusual phenomena are observed in the system. 
MCT approach to this system was used in [30–33] exploiting dif-
ferent approaches for the static structure factor. The MCT equations 
reveal the A4 bifurcation singularities and A3 end points indicating 
glass–glass transitions.

In the present paper, we propose a toy model aiming to de-
scribe in the frame of MCT approach the main common features 
of the phase diagrams of binary and quasibinary systems in the 
simplest way. We postulate a very simple form of static structure 
factor (SSF) as a sum of two delta-functions. This enables us to 
obtain results in almost analytical way. We do not consider our 
SSF as an approximate one for any given system, so we do not 
claim to obtain a quantitative description of some concrete system. 
Our phase diagram is given as a function of characteristics of our 
toy SSF rather than real physical parameters. Nevertheless we are 
going to obtain a qualitative phase diagram with the same topol-
ogy and the same characteristics of glasses as in the mentioned 
MCT papers. In fact, one can easily see the similarity of the phase 
diagram presented in this paper and that obtained in the most de-
tailed paper [23] for the case of the real binary hard sphere system 
which is in correspondence with the experiments on colloidal sus-
pensions [34,35]. In our simple model it occurs to be possible to 
trace the multiplication of singularities and the appearance of a 
double swallow tail.

In MCT, the system dynamics is described in terms of the auto-
correlation function of the density fluctuations Φq(t) =
〈ρq(t)ρ−q(0)〉/〈ρq(0)ρ−q(0)〉 well known in the theory of liquids 
(see, e.g., Ref. [36]). Here, ρq(t) is the Fourier transform of the sys-
tem density. The autocorrelation function satisfies the equation

∂2Φq(t)

∂t2
+ νq

∂Φq(t)

∂t
+ Ω2

q Φq(t)

+ Ω2
q

t∫

0

dt′mq
(
t − t′)∂Φq(t′)

∂t′ = 0, (1)

where νq corresponds to white noise and Ωq is the characteristic 
frequency. The memory function mq(t) has the form

mq(t) = 1

2

∫
d3k

(2π)3
V �q,�kΦ�k(t)Φ�q−�k(t). (2)

The interaction potential of the system particles is included in the 
vertex function,

Vq,k = ρS�q S�k S�q−�k
[�q�kck + �q(�q − �k)c�q−�k

]2/
q4 (3)

through the static structure factor Sq of the liquid and the direct 
correlation function cq [36]. These two quantities are related:

Sq = 1/(1 − ρcq). (4)

The behavior of the solution of Eq. (1) at large times determines 
relaxation processes in the system [8]. As t → ∞, the algebraic 
equation for the limit correlation function fq = Φq(∞):

fq

1 − fq
= 1

2

∫
d3k

(2π)3
V �q,�k f�k f�q−�k (5)

can be obtained from Eq. (1). Eq. (5) always has the trivial solu-
tion fq = 0 corresponding to the liquid (ergodic) phase. Eq. (5) can 
also have a nonzero solution fq > 0 corresponding to a nonergodic 

glass phase. The value fq can be regarded as an order parameter 
(or a nonergodicity parameter) for the liquid–glass transition.

Now we introduce the following toy model – the oversimplified 
form of SSF which enables us to advance farther in analytical way:

S(q) ≈ 1 + Aδ(q − k1) + Bδ(q − k2). (6)

Our model SSF contains two maxima at k1 and k2 with the area A
and B under the maxima. An example of such SSF can be found in 
Ref. [32].

After substituting of (6) in Eqs. (3)–(5) it is easy to see that the 
function fq as a function of q is nonzero only in two points: k1
and k2. So, with no other approximations we obtain the following 
system of two nonlinear algebraic equations for two nonergodicity 
parameters f1 ≡ fk1 and f2 ≡ fk2 (compare Ref. [5]):

f1

1 − f1
= (af1 + bf2)

2[= F1],
f2

1 − f2
= x(af1 + bf2)

2[= F2], (7)

where three control parameters are

x = S(k2)

S(k1)

k2
2

k2
1

, (8)

a = S(k1)k1

8π2ρ
, (9)

b = S(k2)k2

8π2ρ
. (10)

Let us note that Eqs. (7)–(10) were derived in the paper [32]
where SSF in the form (6) was first used as a rough approximation 
for the case of square-shoulder system. However, in [32] we did 
not pay attention to the symmetry of the equations we are dealing 
with now.

Our goal is to obtain the points {x, a, b} where the solutions of 
Eqs. (7) become multiple. So, we now pass directly to the problem 
of finding the bifurcation points of Eqs. (7). As is well known (see, 
e.g. [37]), the uniqueness of a solution of two functional equations,

χ1(z1, z2) = 0; χ2(z1, z2) = 0

does not hold at the points where the determinant of derivatives 
det ∂χi

∂zk
is zero.

Let us note, first, that the character of nonlinearity of Eqs. (7)
is so, that one can expect the bifurcation singularities up to fourth 
order (A4). This singularity corresponds to the division of the space 
of three control parameters into three parts by the surface of the 
figure called “swallow tail” (see [16–18]). These parts correspond, 
respectively, to the absence of nontrivial solution of the equations, 
to the part with two solutions, and to the remaining part with 
four solutions. Second, the equations possess a kind of a symmetry 
and of a degeneracy, both having a physical ground contented in 
the form of SSF. The duplication of the singularities demonstrates 
one of the consequences of these properties – we obtain “double 
swallow tail”.

In fact, it is easy to see that Eqs. (7) are invariant under the 
transformation:

f1 → f ′
2; f2 → f ′

1

a → √
x′b′; b → √

x′a′; x → 1/x′.

This means that for every solution of (7) there exists another 
one. The same is true for every bifurcation singularity point Ak
(k = 2, 3, 4).

At the bifurcation points we have det[δqk − Aqk] = 0, where
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