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The propagation of electromagnetic waves in dielectric media characterized by the coefficients εα
β =

εα
β(Eμ, Bμ, ∂ν Eμ, ∂ν Bμ) and μα

β = μα
β(Eμ, Bμ, ∂ν Eμ, ∂ν Bμ) is examined in the eikonal approxima-

tion of electrodynamics. Employing the techniques Hadamard–Papapetrou (HPD) and Spacetime Integra-
tion (STI), we derive the dispersion relation, the polarization modes and effective geometry associated to
the model.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The propagation of electromagnetic waves in nonlinear theo-
ries of electromagnetism has, recently, attracted great interest in
the scientific community. This problem can be investigated under
two different aspects. We can examine this question in the regime
of intense fields [1–3], and also in the context of material media
[4–15]. In both cases, the field equations that govern the electro-
magnetic phenomena are nonlinear. In the regime of intense fields,
the theory is analytically built from a nonlinear lagrangean, which
generally is a function of both the Lorentz invariants F := F μν Fμν

and G := F μν F ∗
μν of the electromagnetic field [16]. In the context

of materials media, the Maxwell equations must be supplemented
with constitutive relations

Dα = εα
β Eβ,

Hα = μα
β Bβ, (1)

where the coefficients εα
β and μα

β represent the dielectric matri-
ces. They are usually called electric permittivity and magnetic per-
meability, respectively. All information about the dielectric proper-
ties of the medium can be obtained from the constitutive relations
[17–20]. In this case, the structure of the propagation of waves
is dependent on the behavior of the medium acted upon by the
external fields as encoded in terms of certain functions which in
general are nonlinear. The electrodynamics in material media is
also considered as a possible scenario for the investigation of ana-
log models for gravitational phenomena [21].
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This work aims to obtain and discuss the solutions to the Fres-
nel eigenvalue equation which describes the propagation of light
rays in material media whose dielectric matrices have a functional
dependence on the electromagnetic field and its first order deriva-
tives. The analysis is restricted to local electrodynamics, where
dispersive effects are neglected. Only monochromatic waves are
considered, thus avoiding ambiguities with respect to the veloc-
ity of the waves.

Section 2 presents two alternative techniques of propaga-
tion of field discontinuities: (i) Hadamard–Papapetrou (HPD), and
(ii) Spacetime Integration (STI). Section 3 presents the eigenvalue
equation for our model. Section 4 obtains the dispersion relation
and the permitted polarization modes, as well as the optical metric
for the model are analyzed. Section 5 summarizes our results.

A Minkowskian spacetime described in an adapted Cartesian
coordinate system is used throughout this work. The units are
such that c = 1. The spacetime metric is denoted by ημν =
diag(+1,−1,−1,−1). For an arbitrarily given function F (xμ), its
partial derivatives ∂μ F with respect to any given spacetime coor-
dinate xμ is denoted by F ,μ . All quantities are referred to as mea-
sured by the geodetic observer V μ = δ

μ
0 , where δ

μ
ν denotes the

Kronecker tensor and hμ
ν := δ

μ
ν − V μVν is the projector onto the

three-dimensional rest space of this observer V μ . For any given
pair of space-like vectors Xμ = (0, �X) and Y μ = (0, �Y ), we have
( �X · �Y ) = −XμYμ .

2. The formalism of shock waves

2.1. Hadamard–Papapetrou (HPD)

The technique used in the HPD formalism is to analyze the
discontinuity of a function F by an orientable hypersurface in a
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differentiable manifold M [22,23]. In this work, we are interested
in analyzing the discontinuity of a function F across a space-like
(or possibly light-like) orientable borderless hypersurface. Let Σ

be such a hypersurface, defined in terms of a given function Φ

by Σ : Φ(xμ) = 0. Such Σ then splits the spacetime into three
consistently defined sets [4]. Let X− be the union of sets of space-
time points P− in the past of P for each P ∈ Σ , and similarly
X+ be the union of sets of spacetime points P+ in the future of
P for each P ∈ Σ . Causality of spacetime ensures that X+ and
X− are two disjoint sets. For each point P0 ∈ Σ , any sufficiently
small neighborhood U P0 of P0 is partitioned into three disjoint re-
gions: U−

P0
⊂ X− , U+

P0
⊂ X+ and U 0

P0
⊂ Σ . Let r be the radius of

this neighborhood U P0 , and let also P− ∈ U−
P0

and P+ ∈ U+
P0

be
any two neighbor points from P0 arbitrarily chosen on opposite
sides of Σ . Consider an arbitrary function F (xμ) (or tensor field of
arbitrary rank, whose indices being omitted for convenience of no-
tation) defined in U P0 . The discontinuity of F (xμ) across Σ is then
defined as

[F ]Σ(P0) := lim
r→0+

[
F
(

P+) − F
(

P−)]
. (2)

Suppose that the function F (xμ) has a vanishing discontinuity
across Σ , i.e. that [F ]Σ(P ) = 0 at each point P ∈ Σ . Papapetrou
has shown [23] that the discontinuity of F ,μ across Σ has the
form

[F ,μ]
Σ

(P ) = F̃ Kμ, (3)

where F̃ is a function defined on Σ , with the same rank and with
the same algebraic symmetries of F , while Kμ is the vector normal
to Σ defined by Kμ := ∂μΦ . More generally, if the function F (xμ)

is such that all its derivatives F ,μ1μ2...μi from order zero to order i
have null discontinuities in Σ , then its derivative F ,μ1μ2...μiμi+1 of
order (i + 1) presents discontinuity through Σ as

[F ,μ1μ2...μiμi+1 ]Σ = F̃ Kμ1 Kμ2 . . . Kμi Kμi+1 , (4)

where F̃ is a function defined on Σ , with the same rank and with
the same algebraic symmetries of F .

2.2. Spacetime Integration (STI)

Maxwell equations constitute a system of coupled partial differ-
ential equations of first order, and must hold in the vicinity of any
given point on which the fields are continuous. However, if there
is any domain of spacetime for which the fields are discontinuous,
then in this domain these equations are not well defined. Thus, it
becomes necessary to replace this set of differential equations by a
new set of equations to give us information about the discontinu-
ity of the fields. Consider an open and connected limited domain
G of the spacetime, and let Γ : φ(xμ) = 0 be a hypersurface which
is the boundary of G . Admit that Γ is continuous and orientable,
and that it has continuous by parts tangent hyperplanes. Let also a
function f be continuous in Ḡ = G ∪Γ and with continuous partial
derivatives in G . Then, it holds the identity (Stokes’s Theorem)∫
G

(∂μ f )dΩ =
∫
Γ

f nμ dS, (5)

where λ := ±(∂μφ∂μφ)−1/2 and nμ := λ∂μφ, while dΩ is an in-
finitesimal element of domain G and dS is an infinitesimal element
of hipersurface Γ . Therefore, nμ is a normalized vector which is
orthogonal to the hypersurface Γ . The signal of λ is chosen to en-
sure that the vector nμ is directed outwards from G .

Consider a domain G of the spacetime over which the fields
�E and �B , the inductions �D and �H , and the sources ρ and �J , are

all continuous and have continuous partial derivatives. Integrating
Maxwell equations

∂μDμ = ρ, (6)

V ν∂ν Dμ + ημναβ Vα∂ν Hβ = Jμ, (7)

∂μBμ = 0, (8)

V ν∂ν Bμ − ημναβ Vα∂ν Eβ = 0, (9)

over such G and using the identity equation (5), we have∫
Γ

{�n × �H − �Dλ(∂tφ)
}

dS =
∫
G

�J dΩ,

∫
Γ

{�n × �E + �Bλ(∂tφ)
}

dS = 0,

∫
Γ

�n · �D dS =
∫
G

ρ dΩ,

∫
Γ

�n · �B dS = 0, (10)

where �n := λ �∇φ. If the vector fields ρ , �J , �E , �B , �D and �H are
all continuous and have continuous partial derivatives in G , then
Eqs. (10) are fully equivalent to Maxwell equations (6)–(9). How-
ever, Eqs. (10) hold also for discontinuous fields. We can therefore
consider these last equations as a generalization of Maxwell equa-
tions. Discontinuous fields that solve these integral equations are
called weak solutions of Maxwell equations [24,25].

Assume that Γ0: Φ(xμ) = 0 is a regular orientable hypersurface
where the electromagnetic fields are discontinuous. This hypersur-
face Γ0 is a continuously differentiable submanifold that cuts an
open connected limited domain G of spacetime in two open and
disjoint subdomains G1 and G2. The subdomain G1 is enclosed by
Γ1 and Γ0, while the subdomain G2 is enclosed by Γ2 and Γ0. By
means of a procedure similar to the one which leads to Eqs. (10),
one can obtain two new sets of integral equations valid in subdo-
mains G1 and G2 directly from Maxwell equations. The compati-
bility of these three sets of integral equations yields

�∇Φ × [ �H]Γ0 − (∂tΦ)[ �D]Γ0 = 0,

�∇Φ × [�E]Γ0 + (∂tΦ)[�B]Γ0 = 0,

�∇Φ · [ �D]Γ0 = 0,

�∇Φ · [�B]Γ0 = 0, (11)

where [ �X]Γ0 stands for the discontinuity of the quantity �X across
Γ0 making use of the notation of Eq. (2). Such a set of equations
can be formally obtained from Maxwell equations (6)–(9) by re-
placing the differential operators ∂μ by the multiplicative operators
∂μΦ .

3. Fresnel equation

Various models of nonlinear electrodynamics where the di-
electric matrices εα

β and μα
β have a given functional depen-

dence with respect to external electromagnetic fields applied to
the medium are well known in the literature. We consider a model
where such dielectric matrices depend not only on the external
electromagnetic fields Eμ and Bμ , but also on their spatial deriva-
tives. Accordingly, our analysis corresponds to local nonlinear elec-
trodynamics.

Consider the Maxwell equations (6)–(9) and the constitutive re-
lations (1) of a given material medium is such that its dielectric
parameters εα

β and μα
β have the functional form
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