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Permanent Magnet Synchronous Motor (PMSM) experiences chaotic behavior for a certain range of its
parameters. In this case, since the performance of the PMSM degrades, the chaos should be eliminated.
In this Letter, the control of the undesirable chaos in PMSM using Lyapunov exponents (LEs) placement
is proposed that is also improved by choosing optimal locations of the LEs in the sense of predefined
cost function. Moreover, in order to provide the physical realization of the method, nonlinear parameter
estimator for the system is suggested. Finally, to show the effectiveness of the proposed methodology,
the simulation results for applying this control strategy are provided.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Chaotic behavior has been extensively analyzed in many fields
such as engineering, medicine, ecology, biology, and economy. As
a matter of fact, chaos may occur in many natural processes. In
many practical situations, in order to suppress chaos, it is required
to control the related chaotic system.

One scientific field, in which chaos phenomenon has been ap-
peared, is the motor drive system [1]. The Permanent Magnet Syn-
chronous Motor (PMSM) that is under study in this Letter, exhibits
chaotic behavior for a certain range of its parameters [2]. When the
PMSM enters to these operational conditions, chaos control can be
accomplished. Therefore, chaos control in PMSM has become an
active research in the field of nonlinear control of electric motors.

There are some methods for controlling chaos. The OGY method
is a basic methodology for controlling chaos [3]. Ref. [4] includes a
comprehensive survey in the variety of the methods and their ap-
plications on this matter. Although a few of these methods have
been used for controlling chaos in PMSM, some others are not
quite appropriate for this aim. For instance, in OGY method, find-
ing an adjustable parameter is not often simple. Also, control of
chaos via the Time-Delay Feedback Control (TDFC) method though
is used for PMSM [5]. However, it encounters with some problems
as the control objective must be the equilibrium or the Unstable
Periodic Orbit (UPO); moreover, determining the time delay for
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TDFC method is difficult. Some of the classical methods of chaos
control also have been used to control the undesirable chaos in
PMSM. An adaptive Dynamic Surface Control (DSC) law has been
proposed in [6]. Also, for this purpose a nonlinear feedback con-
trol method is suggested in PMSM [7].

On the other hand, the Lyapunov exponents have been conven-
tionally used in order to quantitatively characterize the exponen-
tial divergence of initially nearby trajectories and there are several
methods for calculating them [8–10]. Although the Lyapunov ex-
ponents are known as the chaotic behavior indicators, they can
potentially be used in the purpose of chaos control as well. In
this regard, control of chaos by Lyapunov exponents placement has
been proposed in [11,12] so that the Lyapunov exponents of the
closed-loop system become negative and consequently the chaos
is eliminated in the related system.

In this research, the control of chaos in PMSM through opti-
mal placement of the Lyapunov exponents is proposed. For this
purpose, the Jacobian approach is used continuously to calculate
the Largest Lyapunov Exponent (LLE). At first, a control law is pre-
sented which assigns the Lyapunov exponents in the desired loca-
tions. Then, searching for the optimal Lyapunov exponents, subject
to a defined cost function, will be the main goal. Guarantee of sta-
bility of the closed-loop system with the proposed control law is
proved in Lemma 3.

The Letter is organized as follows: After introduction, modelling
of the permanent magnet synchronous motor is briefly reviewed
in Section 2. This model is fit for carrying on chaotic behavior
analysis. Computation of the largest Lyapunov exponent is pre-
sented in Section 3. Then, the proposed control algorithm using
optimal Lyapunov exponents’ placement is suggested in Section 4.

0375-9601/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2010.08.047

http://dx.doi.org/10.1016/j.physleta.2010.08.047
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:ataei@eng.ui.ac.ir
mailto:kiyoumarsi@eng.ui.ac.ir
mailto:behzad.ghorbani63@gmail.com
http://dx.doi.org/10.1016/j.physleta.2010.08.047


M. Ataei et al. / Physics Letters A 374 (2010) 4226–4230 4227

The simulation results of implementing the proposed control law
are provided in Section 5 and finally some conclusion remarks are
discussed in Section 6.

2. Modeling of the permanent magnet synchronous motor

The model of the permanent magnet synchronous motor with
smooth air gap is described as follows [13,14]:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dω̃

dt̃
= (npψr ĩq − βω̃ − T̃ L)/ j,

dĩq

dt̃
= (−Rĩq − Lω̃ĩd − ψrω̃ + ũq)/L,

dĩd

dt̃
= (−Rĩd + Lω̃ĩq + ũd)/L,

(1)

where, ω̃, ĩq and ĩd are the state variables, which represent mo-
tor angular frequency (rad/s) and quadrature-axis and direct-axis
currents (A), respectively; ũq and ũd are the quadrature-axis and
direct-axis stator voltage components (V), respectively; t̃ is the
time (s), T̃ L denotes the load torque (N m), L is the winding stator
inductance (H), R stands for the stator winding resistance (�), ψr

is the permanent magnet flux (Wb), β is the viscous damping co-
efficient (N rad−1 s), j is the polar moment of inertia (kg m2), and
np denotes the number of pole pairs of the motor.

To show the existence of chaos in the PMSM, a new change
of variables is used. Assume that τ = L/R , t = t̃/τ and κ =
β/(npτψr). The scaled state variables ω, iq and id are defined as
follows:

id = ĩd

κ
, iq = ĩq

κ
, ω = τ ω̃, (2)

in which ω, iq and id are the scaled motor angular frequency and
the scaled quadrature-axis and direct-axis currents, respectively.
Thus, the new scaled model for the PMSM becomes:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dω

dt
= σ(iq − ω) − T L,

diq

dt
= −iq − ωid + γω + uq,

did

dt
= −id + ωiq + ud,

(3)

where

γ = −ψr/(κ L), σ = βτ/ j, T L = τ 2 T̃ L/ j,

uq = ũq/(κ R), ud = ũd/(κ R).

In Eqs. (3), uq and ud are the scaled quadrature-axis and direct-
axis stator voltage components respectively, T L is the scaled load
torque, and σ and γ are previously defined system parameters.

Assume the desired state vector is (ω∗, i∗q, i∗d). Therefore, the

errors are defined as e = (eω, eq, ed)
T = (ω − ω∗, iq − i∗q, id − i∗d)T .

The model of the PMSM in new coordinate can be described as:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ėω = σ(eq − eω) + σ
(
i∗q − ω∗) − T L,

ėq = −eq − eωed − ω∗ed − i∗deω + γ eω − i∗q − ω∗i∗d
+ γω∗ − i̇∗q + uq,

ėd = −ed + eωeq + ω∗eq + i∗qeω − i∗d + ω∗i∗q + ud.

(4)

The PMSM is experiencing chaotic behavior for a certain range
of its parameters. For example, for the case of σ = 5.46, γ = 20,
ud = uq = 0, T L = 0, ω(0) = −5, iq(0) = 0.01 and id(0) = 20 the
system can exhibit chaotic behavior as shown in Fig. 1.

Fig. 1. The strange attractor in PMSM.

3. Calculation of the largest Lyapunov exponent (LLE)

Lyapunov exponents show the average rate of growing or
shrinking of a small volume of initial conditions. They are used
for characterizing several types of behaviors in nonlinear systems,
especially the Lyapunov exponents that are the hallmark of chaos
[15]. A positive value of the largest Lyapunov exponent indicates
chaotic behavior. So computing the largest Lyapunov exponent has
proven to be the most useful dynamical diagnostic for chaotic sys-
tems.

Consider a continuous system as follows:

ẋ = f (x) + u, (5)

where x ∈ Rn is the state vector and f (·) is a continuously dif-
ferentiable smooth function in Rn and u ∈ Rn is the control input
vector.

The largest Lyapunov exponent can be computed as follows
[16]:

λm = lim
t→∞

1

t

t∫
0

ξ(t)T JcLζ (t)

‖ξ(t)‖2
dt, (6)

where J cL is the Jacobian matrix for the closed-loop system and
ξ(t) ∈ Rn is a normalization perturbation vector. ξ(t) is computed
from differentiating with respect to time:

ξ̇(t) =
(

In×n − ξ(t)ξ(t)T

‖ξ(t)‖2

)
J cLξ(t), (7)

where ξ(0) �= 0 and In×n is the identity matrix with dimension
n × n.

4. The proposed controller design methodology

Any system containing at least one positive Lyapunov exponent
is defined to be chaotic. If we place suitable negative Lyapunov
exponent instead of the largest Lyapunov exponent for closed-loop
system, then chaotic behavior of the system will be eliminated. For
this purpose the following Lemma 1 is presented.

Lemma 1. The largest Lyapunov exponent of the closed-loop system (5)
is assigned in the desired negative location if the control is selected such
that:

u = (− JoL + λ∗
m In×n

)
x, (8)

where JoL is the Jacobian matrix for the open-loop system and λ∗
m is the

desired negative largest Lyapunov exponent.
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