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In this Letter, a high gain integral controller for synchronization of unknown non-autonomous chaotic
systems is proposed. Perturbation theory is used to demonstrate that the synchronization error of
the resulting feedback system converges to zero. Numerical simulations are presented to illustrate the
effectiveness of the proposed method.
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1. Introduction

Chaos synchronization has many applications in biological sys-
tems, secure communication, and laser dynamics [1–4]. Many tech-
niques that use linear or nonlinear feedback control have been
proposed to synchronize chaotic systems [5–16].

However, most physical chaotic systems include nonlinear com-
ponents, which are commonly unknown; therefore modeling and
analysis of such chaotic systems requires methods to quantify the
effects of unknown nonlinearities, uncertain parameters, or both.
To meet this requirement, Lyapunov’s direct method [17] has been
used to develop adaptive control schemes and parameter update
rules for the synchronization of structurally equivalent autonomous
chaotic systems. Y. Yu [18] proposed the chaos synchronization
of a unified autonomous chaotic systems in the presence of un-
known system parameters. Recently, adaptive approaches [19–21]
were proposed for synchronization of different non-autonomous
chaotic systems with unknown or uncertain parameters. Such sys-
tems are theoretically important and relevant for modeling the
behavior of many engineering systems such as offshore platforms,
buildings under earthquakes and orientation information and so
on. However, these adaptive control approaches cannot be applied
for synchronization of chaotic systems if the model of the systems
includes unstructured uncertainties or if prior knowledge of the
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model is not available. The examples are the synchronization be-
tween neuron clusters [22], or β-cells in pancreas [23].

In this Letter, we present a high gain integral control for syn-
chronization of different non-autonomous chaotic systems whose
models are fully unknown. The error dynamics of resulting feed-
back systems can be considered to be two-time-scale nonlinear dy-
namic systems which have fast and slow dynamics. By Tikhonov’s
theorem [24], the slow error dynamic system shows quasi-steady-
state properties if the fast error dynamic system has an isolated
exponentially stable equilibrium point. Then, the proposed con-
troller guarantees convergence of the error to the origin. The
proposed method can provide complete synchronization and anti-
synchronization by simply redefining the error signal. Numerical
examples of synchronization and anti-synchronization are provided
to demonstrate the effectiveness of the proposed method.

2. System description

We consider a class of non-autonomous chaotic drive and re-
sponse systems as follows. The drive system has the form,

ẋd = Axd + B f (t, xd) (1)

where xd ∈ R
n is the state vector, f (t, xd) : R

+ × R
n → R is an

unknown continuously differentiable nonlinear function,

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0
...

1

⎤
⎥⎥⎦ . (2)
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Similarly, the non-autonomous chaotic response system has the
form

ẋr = Axr + B
[

g(t, xr) + u
]

(3)

where xr ∈ R
n is the state vector, g(t, xr) : R

+ × R
n → R is an un-

known continuously differentiable nonlinear function, and u ∈ R is
the control input. Define the synchronization error as

e � xd − xr . (4)

By subtracting (3) from (1), the synchronization error dynamics is

ė = ẋd − ẋr

= Ae + B
[

f (t, xd) − g(t, xr) − u
]
. (5)

Then, the objective of the synchronization problem is to design
a controller to make the synchronization error converges to the
origin, i.e., e(t) → 0 as t → ∞.

3. Integral control for synchronization

In this section, we present a high gain integral control for syn-
chronization of two unknown non-autonomous chaotic systems.
The error dynamic system (5) is converted to a singularly per-
turbed system by applying high gain integral control; stability
analysis is performed using the singular perturbation method.

The following theorem summarizes the main result.

Theorem 1. Consider the unknown non-autonomous chaotic drive (1)
and response (3) systems. Then, there exists ε∗ > 0 such that for ε ∈
(0, ε∗) the synchronization error (4) converges to zero as t → ∞ if the
control law is given by

u = α1

ε
en + us + σ , (6)

σ̇ = α2

ε2
en + 1

ε
us, (7)

us = K e, (8)

where en is the nth element of e; ε is a positive small constant; α1 and α2
are constants chosen such that the polynomial s2 +α1s +α2 is Hurwitz;
and K is an 1 × n gain matrix such that the transfer function H(s) =
(sI − (A − B K ))−1 is Hurwitz.

Proof. Using the control law (6), the error dynamics (5) can be
rewritten as

ė = Ae + B

[
d − σ − α1

ε
en − us

]
, (9)

where

d = f (t, xd) − g(t, xr). (10)

To convert the error dynamical equation into singular perturbed
form, we first define

η =
[
η1
η2

]
�

[ en
ε

d − σ

]
. (11)

Differentiating (11) and multiplying both sides by ε , then using (9)
yields

εη̇1 = ėn

= −α1

ε
en − us + d − σ ,

εη̇2 = ε[ḋ − σ̇ ]
= −α2η1 − us + ε

[
ḟ (t, xd) − ġ(t, xr)

]
. (12)

Together, (9) and (12) constitutes the standard singularly perturbed
model in which (9) is the slow subsystem and (12) is the fast sub-
system.

The fast subsystem can be rewritten in state-space form:

εη̇ = Āη + ε

{
B1

[
ḟ (t, xd) − ġ(t, xr)

] − B2
us

ε

}
, (13)

where

Ā =
[−α1 1

−α2 0

]
, B1 =

[
0
1

]
, B2 =

[
1
1

]
. (14)

Using (11), 1
ε us(xd, xr, t) can be shown to be locally Lipschitz in

its arguments because

us

ε
= 1

ε
K

[ (n)∫
en dt,

(n−1)∫
en dt, . . . , en

]

= K

[ (n)∫
η1 dt,

(n−1)∫
η1 dt, . . . , η1

]
. (15)

In addition, Ā is Hurwitz by design; this means that the origin
is an exponentially stable equilibrium point of the boundary-layer
model [24]. Therefore, from Tikhonov’s theorem, η = O (ε) for t ∈
[t0, T (ε)] where limε→0 T (ε) = 0.

Hence, (9) can be rewritten as

ė = Ae + B
[
us + O (ε)

]
= (A − B K )e + O (ε). (16)

This shows that ‖e‖ is uniformly ultimately bounded and that the
bound can be made arbitrarily small by choosing small ε . This
means in turn that (e, η) will approach Nε , a neighborhood of
the origin, where Nε can be made arbitrarily small by choosing
small ε . Then, (9) and (13) can be rewritten as

ė = (A − B K )e + δ1(η), (17)

εη̇ = Āη + εδ2(e, η) (18)

in Nε , where

δ1(η) = B(η2 − α1η1),

δ2(e, η) = B1

(
η̇2 + α2

ε
η1

)
+ 1

ε
(B1 K e − B2 K e).

The functions δ1 and δ2 are locally Lipschitz in (e, η) and vanish at
the origin. Then, in Nε ,∥∥δ1(η)

∥∥ = ∥∥δ1(η) − δ1(0)
∥∥ � k1‖η‖,∥∥δ2(e, η)

∥∥ = ∥∥δ2(e, η) − δ2(0, η) + δ2(e, η) − δ2(e,0)
∥∥

�
∥∥δ2(e, η) − δ2(0, η)

∥∥ + ∥∥δ2(e, η) − δ2(e,0)
∥∥

� k2‖e‖ + k3‖η‖ (19)

with nonnegative constants k1, k2 and k3 that are independent
of ε .

If δ1(t) = 0 in (17), the origin is an exponentially stable and the
existence of a Lyapunov function V 1 that satisfies

∂V 1

∂e
(e)

[
(A − B K )e

]
� −k4‖e‖2,

∥∥∥∥∂V 1

∂e

∥∥∥∥ � k5‖e‖

is guaranteed by the converse Lyapunov theorem [24].
Choose the Lyapunov function candidate as V = V 1(e) + ηT Pη.

Then, in some neighborhood near the origin,
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