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The analogy between dynamics and optics had a great influence on the development of the foundations 
of classical and quantum mechanics. We take this analogy one step further and investigate the validity of 
Fermat’s principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert 
space and the classical phase and configuration space). We propose that if the notion of a metric distance 
is well defined in that space and the velocity of the representative point of the system is an invariant 
of motion, then a generalized version of Fermat’s principle will hold. We substantiate this conjecture for 
time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. 
An exception to this principle is the configuration space of a charged particle in a constant magnetic field; 
in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab 
frame.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An important lesson that has been emphasized throughout the 
history of physics is that illuminating new aspects of the interwo-
ven connections between geometry and physics leads to paradigm 
shifts in physics. Typically, novel geometric considerations of phys-
ical quantities lead to new variational principles which assign the 
natural evolution of physical systems with an extremum of some 
functional or a geodesic curve in some hyperspace. The oldest of 
these variational principles is the Fermat principle of least time, 
which became a fundamental principle in geometric optics. The 
principle was introduced by Fermat, who also called it the prin-
ciple of natural economy [1], and it states that light rays travel in 
a general medium along the path that minimizes the time taken 
to travel between the initial and final destinations. The concept 
of natural economy inspired Maupertuis to introduce the princi-
ple of least action in analytical mechanics, which later evolved 
through the work of Euler, Lagrange, Hamilton, and Jacobi to be-
come a fundamental concept in classical mechanics. By 1887, it had 
become clear that the least action is a universal concept in physics 
when Helmholtz expanded its domain of validity by applying it to 
two regimes beyond the standard problems of classical mechan-
ics, namely, thermodynamics and electrodynamics [2]. Since then, 
the pursuit of new variational principles in physics has not re-
lented [3].
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The mathematical formulation of Fermat’s principle states that 
the time functional T , defined as

T =
∫

ds

ν(s)
, (1)

where ν(s) is the speed of light and ds is the distance element 
along the light trajectory, is minimized [4]. In other words, if T is 
computed along all possible trajectories between fixed initial and 
final positions, T will always be minimum along the actual path 
traveled by the light rays (the physical path). The modern version 
of Fermat’s principle is written in terms of the index of refraction 
n(s) = c

ν(s) , where c is the speed of light in free space, and states 
that the optical path length 

∫
n(s)ds is a minimum. In that sense, 

Fermat’s principle is the optical analog of Jacobi’s principle of least 
action [5], which states that for a conservative classical system at 
energy E , with potential function V between its constituent parti-
cles, the action functional

I =
∫ √

E − V (s)ds (2)

is an extremum.
The remarkable property of this action that distinguishes it 

from other variational principles in analytical mechanics, i.e., 
Hamilton and Lagrange’s variational principles, is that it repre-
sents a purely geometric quantity. This quantity is computed along 
different trajectories in the configuration space between fixed 
points without referring to any time evolution. Therefore, Eq. (2)
can be used to define a new Riemannian space, whose metric 

http://dx.doi.org/10.1016/j.physleta.2014.09.032
0375-9601/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2014.09.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:T.Elsayed@thphys.uni-heidelberg.de
http://dx.doi.org/10.1016/j.physleta.2014.09.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.09.032&domain=pdf


3206 T.A. Elsayed / Physics Letters A 378 (2014) 3205–3209

ds′ = √
E − V (s)ds, where the natural evolution of the represen-

tative point of the system is along geodesic curves.
In this work, we set out to seek how far the analogy between 

dynamics and optics applies as far as the Fermat principle is con-
cerned. In particular, we investigate the validity of Fermat’s prin-
ciple for a generic many-body classical and quantum system, and 
pose the following question: If the state of a conservative dynam-
ical system is represented in some metric space S by a point, and 
the velocity field ν(s) is computed everywhere in S from the equa-
tions of motion using the proper metric of that space, will the 
motion of this point be along a path that extremizes the time func-
tional T ?

2. The generalized Fermat principle

We answer the question posed above by proposing the general-
ized Fermat principle (GFP): Whenever the speed of the representa-
tive point of a conservative dynamical system, ν(s), is an integral 
of motion in a metric space S, the path followed during the dy-
namical evolution of that system in S between fixed initial and 
final states makes the time functional T stationary against small 
variations of the path. In contrast to light rays, where T is an ex-
tremum even when the speed of light is not constant (i.e., in an 
inhomogeneous medium), this conjecture considers only the case 
when ν(s) is invariant during the time evolution. A corollary that 
follows from this conjecture is that the length of the physical path ∫

ds is stationary (e.g., the path can be a geodesic) on the sub-
manifold of a given value of ν(s) embedded in S when the above 
condition is fulfilled.

Mathematically speaking, the GFP states that if ν(s) is a con-
stant of motion along the physical path (not necessarily in the 
whole space), then among all possible trajectories between initial 
and final states, only those which make T invariant under an in-
finitesimal variation of the path, i.e.,

δT = 0, (3)

are possible candidates for the dynamical evolution. The value of 
T corresponding to the physical path is not necessarily the global 
minimum between all paths connecting the initial and final states. 
We emphasize here that we are not aiming to derive the equations 
of motion from the time action, because we have to use them to 
find ν(s) in the first place. We rather propose that they necessarily 
lead to a stationary time action when ν(s) is an integral of motion. 
Unlike the original Fermat principle, not every pair of states are 
connected by a physical path. Rather, the principle proposed here 
gives a geometrically appealing argument to explain why the evo-
lution of the system followed a certain trajectory between a given 
pair of initial and final states which we know a priori are con-
nected by some physical path.

We investigate the validity of this conjecture by considering 
three cases: (i) The evolution of quantum systems in the projective 
Hilbert space P, where wavefunctions are defined up to an over-
all phase factor. (ii) The evolution of a system of coupled harmonic 
oscillators in the phase space consisting of coordinates and mo-
menta and equipped with a Euclidean metric. (iii) The motion of 
a charged particle in a constant magnetic field, which turns out 
to be an exception. Similar to the Jacobi’s principle, the principle 
proposed here represents a geometric variational principle in the 
phase and Hilbert spaces. In both cases, the velocity field ν(s) is 
defined completely by the Hamiltonian of the problem, and is ob-
tained from the equations of motion of the system that will drive 
its evolution along the physical path (i.e., Schrödinger equation in 
quantum systems and Hamilton’s equations of motion in classical 
systems).

2.1. Generalized Fermat principle in Hilbert space

The development of the concept of geometric phase in quan-
tum mechanics triggered the interest of many physicists to look 
for more connections between quantum mechanics and geometry 
[6]. Anandan and Aharonov investigated the nature of the geome-
try of quantum evolution in the projective Hilbert space P through 
a series of papers in the late 80s [7–9]. They have shown [8] that 
the speed of quantum evolution in P is related to the energy un-
certainty �E = (〈H2〉 − 〈H〉2)1/2 via

ds = �E dt/h̄, (4)

where ds is the infinitesimal distance in P given by the Fubini–

Study (FS) metric ds2 = 〈δψ |δψ〉
〈ψ |ψ〉 − |〈δψ |ψ〉|2

〈ψ |ψ〉2 . On the unit sphere, 

ds = 〈δψ |1 − P̂ |δψ〉 1
2 , where P̂ is the projection operator |ψ〉〈ψ |. 

The trajectory traversed by a ray in P under unitary evolution is 
generally not a geodesic, i.e., δ

∫
ds �= 0. This can be easily con-

ceived by considering a system composed of a single quantum 
spin-1/2. In this case, P is simply the Bloch sphere and the pre-
cession motion of the spin on Bloch sphere off the equator is not 
a geodesic.

Several attempts [10,11] have been made to find new formu-
lations where the quantum evolution is a geodesic flow. Noticing 
that the speed of quantum evolution �E/h̄ is invariant for time-
independent Hamiltonians, the simple answer to this problem sug-
gested by the present paper is to consider T = ∫ ds

�E as a geodesic 
quantity, i.e., Fermat’s principle in Hilbert space (here and in what 
follows, we set h̄ = 1). This issue should be distinguished from 
the quantum brachistochrone problem [12], where the Hamilto-
nian that leads to optimal time evolution between an initial and 
final state is sought. The above proposition, however, states that 
the unitary evolution generated by any time-independent Hamil-
tonian is optimal, with respect to all other possible trajectories 
connecting the initial and final states (Fig. 1a).

To show that T is stationary along the physical path through P, 
let us parameterize the evolution along any path connecting the 
initial and final states |ψi〉 and |ψ f 〉 by some arbitrary parame-
ter τ . We can write Eq. (1) as

T =
|ψ f 〉∫

|ψi〉
dτ

〈ψ̇ |1 − P̂ |ψ̇〉 1
2

(〈ψ |H2|ψ〉 − 〈ψ |H|ψ〉2)
1
2

, (5)

where |ψ̇〉 = |δψ〉
δτ . Taking the variational derivative of T with re-

spect to 〈δψ | subject to the constraints of normalization and fixed 
initial and final states, we arrive at the Euler–Lagrange (EL) equa-
tion,

δL

〈δψ | − d

dτ

δL

〈δψ̇ | = 0, (6)

where L is the integrand in Eq. (5) added to the Lagrange multi-
plier term λ(τ )(〈ψ |ψ〉 −1). Although we have already imposed the 
normalization condition in the Fubini–Study metric, we use the 
Lagrange-multiplier method here to ensure that the variations of 
the path will respect the conservation of the norm of |ψ〉. Calling 
the numerator and denominator in Eq. (5), A and B respectively, 
Eq. (6) reads

[ −1

2AB
〈ψ̇ |ψ〉|ψ̇〉 − A

2B3

(
H2|ψ〉 − 2〈H〉H|ψ〉)]

− 1

2AB

[|ψ̈〉 − 〈ψ |ψ̇〉|ψ̇〉 − (〈ψ̇ |ψ̇〉 + 〈ψ |ψ̈〉)|ψ〉]

− 1

2

(|ψ̇〉 − 〈ψ |ψ̇〉|ψ〉)
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