
Physics Letters A 378 (2014) 3244–3247

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Non-equilibrium dynamical phases of the two-atom Dicke model

Aranya B. Bhattacherjee

School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 May 2014
Received in revised form 7 September 2014
Accepted 23 September 2014
Available online 1 October 2014
Communicated by P.R. Holland

Keywords:
Non-equilibrium Dicke model
Dynamical phase transition

In this paper, we investigate the non-equilibrium dynamical phases of the two-atom Dicke model, which 
can be realized in a two species Bose–Einstein condensate interacting with a single light mode in an 
optical cavity. Apart from the usual non-equilibrium normal and inverted phases, a non-equilibrium 
mixed phase is possible which is a combination of normal and inverted phase. A new kind of dynamical 
phase transition is predicted from non-superradiant mixed phase to the superradiant phase which can 
be achieved by tuning the two different atom–photon couplings. We also show that a dynamical phase 
transition from the non-superradiant mixed phase to the superradiant phase is forbidden for certain 
values of the two atom–photon coupling strengths.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The interaction of a collection of atoms with a radiation field 
has always been an important topic in quantum optics. The Dicke 
model (DM) which describes interaction of N identical two level 
atoms with a single radiation field mode, established the impor-
tance of collective effects of atom–field interaction, where the in-
tensity of the spontaneously emitted light is proportional to N2

rather than N [1]. The spatial dimensions of the ensemble of atoms 
are smaller than the wavelength of the radiation field. As a result, 
all the atoms experience the same field and this gives rise to the 
collective and cooperative interaction between light and matter. 
The DM exhibits a second-order quantum phase transition (QPT) 
from a non-superradiant normal phase to a superradiant phase 
when the atom–field coupling constant exceeds a certain critical 
value [2–5]. The Dicke model phase transition was observed re-
cently in a trapped Bose–Einstein condensate (BEC) in an optical 
cavity [6–9]. In the BEC setup, the two spin states of the original 
DM are the two momentum states of the BEC which are con-
trolled by the atomic recoil energy and Raman pumping schemes. 
This approach is similar to a novel scheme proposed by Dimer 
et al. [10]. An important aspect of these experimental develop-
ments is the possibility to explore exotic phases mediated by the 
cavity field. The superradiance phase transition in a BEC is ac-
companied by self-organization of the atoms into a checker board 
pattern [6–9,11].

Interesting equilibrium and non-equilibrium phases have been 
predicted in the DM with BEC [12,13], including crystallization 
and frustration [14], as well as spin glass phase [15–18]. Multi-
mode DM has also been explored recently, revealing interesting 

physics such as Abelian and non-Abelian gauge potentials [19], 
spin–orbit induced anomalous Hall effect [20], and prediction of 
the Nambu–Goldstone mode [21]. An interesting extension of the 
BEC Dicke model is the optomechanical Dicke model which has 
been proposed for detection of weak forces [22,23]. In the present 
paper, we investigate the non-equilibrium properties of the two-
atom Dicke model, which can be realized by a two species BEC 
in an optical cavity. Apart from the usual non-equilibrium nor-
mal and inverted phases, the dynamical phase diagram reveals a 
new kind of non-equilibrium mixed phase. This gives rise to a new 
dynamical phase transition from the mixed phase to the super-
radiant phase by manipulation of the two distinct atom–photon 
coupling strengths. In addition, we show that a dynamical phase 
transition from the non-superradiant mixed phase to the superra-
diant phase is not allowed for certain values of the atom–photon 
coupling strengths of the two sets of atoms.

2. The model

We consider two different ensembles of N1 and N2 atoms cou-
pled simultaneously to the quantized field of an optical cavity 
mode (Fig. 1). The two sets of atoms have transition frequencies 
ω1 and ω2 while the frequency of the cavity mode is ωc . The cav-
ity is pumped by a transverse external laser with frequency ωp . 
The light–matter coupling strengths for the two sets of atoms are 
λ1 and λ2. These coupling strengths λ1 and λ2 can be written 
as λi = λ0iΩP /2(ωp − ωi) (i = 1, 2), λ0i is the single atom-cavity 
mode coupling while ΩP is the transverse pump beam Rabi fre-
quency. The detuning (ωp − ωi) is considered to be large so as to 
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Fig. 1. (Color online.) Experimental setup showing two sets of cold atoms (blue and 
green) in an optical cavity with transverse pumping. The two sets of atoms have 
different atom–photon coupling strengths which depend on their position in the 
cavity. On increasing the transverse pump intensity, one type of atoms can reach 
the critical point earlier.

avoid spontaneous emission. The effective Hamiltonian of the sys-
tem takes the form of a two-atom Dicke model with

H = h̄ω1 J1z + h̄ω2 J2z + h̄ωca†a + h̄λ1√
N1

( J1+ + J1−)
(
a + a†)

+ h̄λ2√
N2

( J2+ + J2−)
(
a + a†), (1)

where �J i = ( J ix, J iy, J iz) is the effective collective spin of length 
Ni/2 for the two sets of atoms and J i± = J ix ± i J iy .

We now discuss the non-equilibrium dynamics arising from the 
above two-atom Dicke model. The semi-classical equations of mo-
tion for the system are given by

J̇1z = iλ1√
N1

(
a† + a

)
( J1− − J1+), (2)

J̇2z = iλ2√
N2

(
a† + a

)
( J2− − J2+), (3)

J̇1− = −iω1 J1− + 2iλ1√
N1

(
a† + a

)
J1z, (4)

J̇2− = −iω2 J2− + 2iλ2√
N2

(
a† + a

)
J2z, (5)

ȧ = −(κ + iωc)a − iλ1√
N1

( J1+ + J1−) − iλ2√
N2

( J2+ + J2−).

(6)

Here κ is the decay rate of the cavity photons. In addition the 
magnitude of pseudo-angular momentum is conserved,

J 2
1z + | J1−|2 = N2

1

4
, (7)

J 2
2z + | J2−|2 = N2

2

4
. (8)

The long time steady state solutions from the equations of mo-

tion can be studied with �̇J i = 0 (i = 1, 2) and ȧ = 0. These fixed 
point solutions can be stable or unstable. Separating a = a1 + ia2, 
J±

i = J ix ± J iy (i = 1, 2), one obtains the steady state equations 
as

κa1 − ωca = 0, (9)

κa2 + ωca1 = − 2λ1√
N1

J1x − 2λ2√
N2

J2x, (10)

ω1 J1y = 0, (11)

ω1 J1x = 4λ1√
N1

a1 J1z, (12)

ω2 J2y = 0, (13)

ω2 J2x = 4λ2√
N2

a1 J2z. (14)

An analysis of these equations leads us to four types of 
steady states, namely (a = 0, J1z = ±N1/2, J2z = ±N2/2). The 
state (a = 0, J1z = −N1/2, J2z = −N2/2) is the normal phase 
while (a = 0, J1z = N1/2, J2z = N2/2) is the inverted phase. The 
states (a = 0, J1z = −N1/2, J2z = N2/2) and (a = 0, J1z = N1/2, 
J2z = −N2/2) are called mixed phases. As we shall show later
these mixed phases generate interesting non-equilibrium phase 
diagrams. The critical coupling strength corresponding to the on-
set of superradiance starting from the normal, inverted or mixed 
phase is obtained by putting �J i = (0, 0, ±Ni/2) (i = 1, 2).

This leads us to the following possible critical constants

J1z = − N1

2
; J2z = − N2

2
(Normal Phase):

λ1c =
√

(κ2 + ω2)ω1

4ω
− λ2

2ω1

ω2
, (15)

λ2c =
√

(κ2 + ω2)ω2

4ω
− λ2

1ω2

ω1
, (16)

J1z = N1

2
; J2z = N2

2
(Inverted Phase):

λ1c = −
√

(κ2 + ω2)ω1

4ω
+ λ2

2ω1

ω2
, (17)

λ2c = −
√

(κ2 + ω2)ω2

4ω
+ λ2

1ω2

ω1
, (18)

J1z = − N1

2
; J2z = N2

2
(Mixed Phase 1):

λ1c =
√

(κ2 + ω2)ω1

4ω
+ λ2

2ω1

ω2
, (19)

λ2c = −
√

(κ2 + ω2)ω2

4ω
− λ2

1ω2

ω1
, (20)

J1z = N1

2
; J2z = − N2

2
(Mixed Phase 2):

λ1c = −
√

(κ2 + ω2)ω1

4ω
− λ2

2ω1

ω2
, (21)

λ2c =
√

(κ2 + ω2)ω2

4ω
+ λ2

1ω2

ω1
. (22)

This set of expressions reveals one interesting point that the 
critical coupling strength for one set of atoms depends on the 
coupling strength of the other set of atoms. For a given set of 
J1z and J2z , Eqs. (15)–(22) determines the boundary between the 
nonsuperradiant (normal/inverted/mixed) and superradiant phase. 
A trivial manipulation of Eqs. (9)–(14) leads us to the following 
equation for J1z = −N1/2 and J1x = 0,

J2x

(
ω2

(
κ2 + ω2

c

) + 8λ2
2

N2
ωc J2z

)
= 0. (23)

Now there are two possibilities depending on whether J2x = 0
and J2z = ±N2/2 or J2x �= 0 and J2z = −N2ω2(κ

2 + ω2
c )/8λ2

2ωc . 
The first condition implies that both the set of atoms are in the 
non-superradiant phase. The second solution corresponds to the 
case where the first set of atoms are in the non-superradiant 
normal phase while the second set of atoms are in the super-
radiant phase. Substituting the second expression for J2z from 

above in the expression for λ1c =
√

ω1(κ2+ω2
c )

4ωc
+ 2λ2

2ω1
N2ω2

J2z , one ob-

tains λ1c = 0. This implies that by keeping one coupling strength 
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