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Phase synchronization (PS) in a periodically pump-modulated two-mode solid state laser is investigated. 
Although PS in the laser system has been demonstrated in response to a periodic modulation with the 
main relaxation oscillation (RO) frequency of the free-running laser, little is known about the case of 
modulation with minor RO frequencies. In this Letter, the empirical mode decomposition (EMD) method 
is utilized to decompose the laser time series into a set of orthogonal modes and to examine the intrinsic 
PS near the frequency of the second RO. The degree of PS is quantified by means of a histogram of phase 
differences and the analysis of Shannon entropy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization in nonlinear systems has been extensively 
studied because of its critical importance in a wide variety of 
disciplines, including physics [1,2], mathematics [3], biology [4], 
physiology [5], ecology [6], chemistry [7], and others [8]. The 
phenomenon is caused by interactions between systems and can 
be classified into several categories, depending on the emerged 
correlations among the systems. The obvious one is complete syn-
chronization (CS), in which interacting systems adjust their states 
and finally converge to a single trajectory [9]. Although the defini-
tion of CS is extremely simple, the requirements for achieving CS 
are relatively strict and therefore other synchronous phenomena, 
especially phase synchronization (PS) [10], are more common in 
both artificial and natural systems.

PS has been one of the most intriguing subjects in nonlinear 
science since the pioneering work done on it in 1996 [11]. PS is 
a type of synchronization that reflects rhythms identification of 
interacting systems, but the amplitudes of the systems remain un-
correlated. The mathematical definition of PS is |nφ1 − mφ2| < c, 
where φ1 and φ2 are instantaneous phases of interacting systems; 
n and m are integers, and c is a constant. Because of the univer-
sality of PS, it has been studied experimentally in various systems, 
such as plasma systems [12] and fluid systems [13]. PS has also 
been realized in a variety of lasers owing to its potential practical 
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applications, examples of which include optically coupled Nd:YAG 
lasers [14], electronically coupled Nd:YAG lasers [15], the cw CO2
laser that is driven by an intracavitary electro-optic modulator 
(EOM) [16], the Nd:YAG laser that is driven by an intracavitary 
acousto-optic modulator (AOM) with two frequencies [17], and 
others [18].

Recently, interest has been extended to PS in a periodically 
pump-modulated frequency-doubled Nd:YAG laser [19]. Ahlborn 
and Parlitz applied recurrence analysis and pseudo ensemble aver-
aging to define and quantify PS in the system, with a focus on the 
emergent synchronous region, which is called the Arnold tongue. 
The Arnold tongue occurs close to the modulating frequency of 
f ≈ 1 MHz, which is exactly the main relaxation oscillation (RO) 
frequency of the laser output in the absence of modulation. Sub-
sequently, Lin et al. used a similar technique and realized PS in a 
two-mode microchip Nd:YVO4 laser experimentally and theoreti-
cally [20]. These results are crucial to increasing the superimposed 
common output of several lasers that are driven by periodic pump 
modulation.

An interesting dynamic feature of a multi-mode laser is the 
presence of more than one frequency peak in the power spectrum 
of the laser output. Accordingly, the multi-mode laser essentially 
has several RO frequencies. The way in which the system responds 
to external periodic driving becomes a very interesting question in 
the study of PS. The power spectrum of the free-running two-mode 
microchip Nd:YVO4 laser presents two distinct RO frequencies. Al-
though PS has been demonstrated when the periodic pump is 
modulated to the first RO frequency of the free-running laser [20], 
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according to standard analysis, this phenomenon is invisible close 
to the second RO frequency. In this Letter, the empirical mode de-
composition (EMD) method [21] is used to elucidate the intrinsic 
PS in the vicinity of the second relaxation frequency. Hilbert trans-
form is used to define the phases of, and the phase differences 
between, the decomposed mode of the laser output and the mod-
ulating signal. Further analysis reveals the existence of a robust 
Arnold tongue in the frequency region of interest.

This Letter is organized as follows. Section 2 introduces the 
two-mode solid state laser model and presents its power spec-
trum. In Section 3, the EMD process is used to decompose the laser 
output and the Hilbert transform is used to calculate its instanta-
neous phase. In Section 4, the appearance of PS is confirmed and 
PS is quantified by an analysis of phase difference. Finally, a brief 
conclusion is drawn.

2. Two-mode solid-state laser model

The scaled Tang–Statz–deMars (TSD) two-mode laser model has 
been demonstrated to be able to reproduce the dynamics of the 
periodically modulated microchip Nd:YVO4 laser [20,22]. The TSD 
model with an externally driving term is
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where N = 2 is the total number of lasing modes, and the subscript 
m = 1, 2 is the index of the corresponding mode. n0 is the spatially 
averaged population inversion density with spatial hole burning, 
normalized by the threshold value; nm is the first-order Fourier 
component of the population inversion density for the two modes, 
and sm is the photo density, normalized by the steady-state value. 
The term w0 is the pump power, normalized by threshold of the 
first lasing mode. The term F (t) = �w cos(2πτ vt) is a periodic 
pump-modulation, where �w and v are the amplitude and the 
frequency of the driving signal, respectively. γm is the gain ratio of 
the mth mode to the first lasing mode. K = τ/τp is the lifetime 
ratio, where τ is the population lifetime of Nd:YVO4 and τp is the 
lifetime in the laser cavity. The numerical time is scaled by the 
population lifetime, so t = T /τ .

To perform the numerical simulations, the parameters of the 
TSD model are chosen as follows: w0 = 12.5, γ1 = 1, γ2 = 0.595, 
τ = 90 μs, τp = 1.15 ns, and K = 78 260 [23]. The sampling in-
terval is 9 ns. Fig. 1(a) shows the power spectrum of the numer-
ically produced laser output S(t) = s1(t) + s2(t) in the absence 
of modulation. The two peaks in the figure are located at the 
first RO frequency, fr1 = 1.644 MHz, and the second RO frequency, 
fr2 = 410 kHz, of the free-running two-mode solid-state laser. The 
dynamic feature of the pair of RO frequencies persists over a wide 
range of parameters. For example, Fig. 1(b) presents another power 
spectrum of the system with w0 = 12.5, γ1 = 1, and γ2 = 0.595. 
The arrows in the figure indicate two different RO frequencies, 
fr1 = 1.455 MHz and fr2 = 292 kHz. This work focuses on the sys-
tem with the parameters that are used in Fig. 1(a), and the results 
are confirmed using other parameters especially those in Fig. 1(b).

An earlier study presented evidence of PS when the frequency 
of the periodic pump-modulation approximates the first RO fre-
quency of the free-running laser, v ≈ fr1 , and the modulating 
amplitude �w exceeds some critical threshold [20]. However, no 

Fig. 1. The power spectrum of the laser output in the absence of modulations. The 
parameters are chosen as (a) w0 = 12.5, γ1 = 1, γ2 = 0.595, and (b) w0 = 9.8, 
γ1 = 1, and γ2 = 0.590.

evidence for PS has been obtained when v approximates the sec-
ond RO frequency, fr2 . The purpose of this work is to identify the 
intrinsic PS under the condition v ≈ fr2 .

3. Empirical mode decomposition

Empirical mode decomposition (EMD) is adopted here to define 
explicitly the instantaneous phase and calculate the phase differ-
ence between the driver F (t) and the laser output. Huang et al. 
proposed this method for analyzing non-stationary and nonlinear 
time series [21]. The method has since been applied to study the 
phase correlation and dynamic properties of financial data [24–26], 
cardiorespiratory synchronization [27], and human ventricular fib-
rillation [28]. The EMD method is based on the assumption that 
any time series consists of a finite number of intrinsic mode func-
tions (IMFs), and each of which has its own characteristic time 
scale. Thus the EMD method aims to decompose the measured 
data into independent IMFs by a series of sifting processes. Since the 
decomposed IMFs are well-behaved intrinsic modes, the Hilbert 
transform can be used to calculate their phases directly.

The algorithm for obtaining IMFs in EMD follows.
Step 1: All local extremes of the laser output S(t) are identi-

fied. Apply two cubic spline lines to connect the local maxima and 
the local minima respectively, and then construct the upper enve-
lope U (t) and the lower envelope L(t) of the time series. Denote 
the mean of the two envelopes as m1(t) = (U (t) + L(t))/2, and 
then the first component h1(t) is defined as the deviation of S(t)
from m1(t),

h1(t) = S(t) − m1(t). (2)

Step 2: An IMF satisfies the following conditions. (a) The upper 
and lower envelopes are symmetric about zero. (b) The number 
of zero crossings equals or differs by one from the number of ex-
tremes. If h1(t) is already an IMF, then go to step 3. Otherwise 
a series of sifting processes must be performed to obtain an IMF 
from h1(t).

Treating h1(t) as the original laser output and denoting m(1)
1 (t)

as the mean of the upper envelope and the lower envelope of 
h1(t), it is easy to have h(1)

1 (t) = h1(t) −m(1)
1 (t). This process is the 

so-called sifting process. Perform the sifting process k times un-
til the resulting h(k)

1 (t) meets the requirements of an IMF. The first 



Download English Version:

https://daneshyari.com/en/article/1859754

Download Persian Version:

https://daneshyari.com/article/1859754

Daneshyari.com

https://daneshyari.com/en/article/1859754
https://daneshyari.com/article/1859754
https://daneshyari.com

