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We study the nonlinear spin dynamics of Heisenberg helimagnet under the effect of electromagnetic 
wave (EM) propagation. The basic dynamical equation of the spin evolution governed by Landau–Lifshitz 
equation resembles the director dynamics of the twist in a cholestric liquid crystal. With the use of 
reductive perturbation technique the perturbation is invoked for the spin magnetization and magnetic 
field components of the propagating electromagnetic wave. A steady-state solution is derived for the 
weakly nonlinear regime and for the next order, the components turn around s plane perpendicular 
to the propagation direction. It is found that as the electromagnetic wave propagates in the medium, 
both the magnetization and magnetic field modulate in the form of kink soliton modes by introducing 
amplitude fluctuation in the tail part of the same.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear evolution of Heisenberg ferromagnet offers sev-
eral possible interesting dynamics when subject to different en-
vironments [1–3]. Especially few ferromagnets exhibit specific spin 
arrangement even in the absence of external fields, for instance the 
helimagnet [4]. Helimagnets are quite interesting because of their
different orientations of spins in different lattices thereby leading 
to a helical structure when one moves along the helical axis. These 
spin arrangements quite resemble that of molecular orientation in 
cholestric liquid crystals and the arrangement of bases in DNA 
double helix chain. Thus the helimagnets are assigned to be one 
among the ordered magnetic spin systems and form interesting 
class of dynamical evolutions. The studies devoted to this pecu-
liar arrangement of magnetic spin systems are quite numerous in 
different aspects. Many theoretical and experimental facts are es-
tablished in the past. The transition from a helical to ferromagnetic 
phase is explored through the phase diagram studied by Rastelli 
and Tassi while performing quantum fluctuations and thermody-
namical properties [4]. The low temperature properties of helimag-
nets show the usual spin wave excitations and the helicity is not
affected by the temperature but depend on the nearest neighbour 
spin exchange [5]. Spin nematic formulation is witnessed when 
the usual helimagnet is subject to vector potential in the Hamil-
tonian and quantum fluctuations inducing an anisotropy in the 
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helical structures [6]. In view of mean field theory calculations, the 
perturbation through the weak magnetic fields induces spin cur-
rent in the helimagnets [7]. Further, application of spin polarized 
current induces the wave number and velocity of the helical mag-
netization that are analogous to those of moving domain walls [8]. 
The dynamics is explored for models of dissipative structures such 
Landau–Lifshitz and Gilbert system. Using the single-crystal neu-
tron scattering experiments performed on the LiCu2O2 helimagnet 
show that exchange constant fluctuates the helical nature of the 
structure through the competition between the interacting nearest 
neighbor antiferromagnetic coupling and the next nearest neigh-
bor ferromagnetic exchange [9]. Very recently, Beula et al. [10] in 
theoretical frame the nonlinear spin excitations of the Heisenberg 
helimagnet showed that in the presence of magnetic field applied 
parallel and perpendicular to the anisotropic axis exhibits the dy-
namics governed by soliton modes. A more rigorous approach is 
invoked on the Heisenberg helimagnet for the spin evolution in the 
classical continuum limit. The elementary and higher order spin 
excitations are the soliton solutions of the fourth order general-
ized nonlinear Schrödinger equation [11]. Most of the studies on 
the helimagnet show spin dynamics are more relevant for experi-
mental support and the theoretical studies are very limited.

In this paper we investigate nonlinear dynamics of the Heisen-
berg helimagnet under the perturbation of electromagnetic (EM) 
wave propagation in the system. The paper is organized as follows. 
In Section 2, we construct the relevant dynamical model in the 
classical limit with Maxwell’s equation. In Section 3, reductive per-
turbation method is employed on the coupled Maxwell–Landau–
Lifshitz equation and derived the generalized derivative nonlinear 
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Schrödinger equation and the exact soliton solution for the same 
equation is systematically solved in Section 4. The results are sum-
marized in Section 5.

2. Formulation of dynamical equation

We interested in estimating the dynamics of the Heisenberg he-
limagnet subject to external magnetic field applied via electromag-
netic wave propagation. The helimagnetic spin system is modeled 
through the dynamical structure associated with that of molecu-
lar orientation of cholestric or twisted nematic liquid crystal first 
introduced by Daniel et al. [11]. The equation of motion for the liq-
uid crystal system is deduced through the free energy represented 
by [n · (∇ × n) + qs]2, where n is the director of the liquid crys-
tal system indicating the average molecular orientation and qs is 
the pitch wave vector. In view of this helical arrangement, for the 
present system the classical Hamiltonian of the helimagnetic sys-
tem can be written in the following form, {[S · (∇ ×S)]2 −q2

a}2 with 
the dynamical variable S representing the average spin density 
function and qa the pitch wave vector with magnitude qa = 2π

p , 
where p is the pitch of the helix. Thus the Heisenberg spin Hamil-
tonian for the helimagnetic spin system in the one-dimensional
case can be written as

H = −
∑

l

[
J (Sl · Sl+1) + τh

{[
êz · (Sl × Sl+1)

]2 − q2
a

}2

− B(Sl · êz)
2 + μ(Sl · H)

]
, (1)

where the terms J , B , τh are constant coefficients representing 
the strength of the various interactions such as nearest neigh-
bour exchange, anisotropy and helicity involved in the system, and 
μ = gμB , where g is the gyromagnetic ratio and μ represents 
the Bohr magneton. The classical equation of motion for the above 
Hamiltonian can be deduced by employing the spin classical Pois-
son bracket, ∂Sl

∂t = {Sl, H}. Further, in the continuum limit, the spin 
evolution equation can be written as [10]

∂S

∂t
= S ×

{
J

∂S

∂z2
− 2B

(
Sz)êz − τhG + γ H

}
, (2)

where

G = −4q2
a

[
2(S × Sz)

z(Sz × êz) + (S × Szz)
z(S × êz)

]
+ 4

[
(S × Sz)

z]2

× [
2(S × Sz)

z(Sz × êz) + 3(S × Szz)
z(S × êz)

]
. (3)

The suffices represents the usual derivatives and the superfix z
represent the z-component of the corresponding term, respec-
tively. The above dynamical equation (2) satisfies the usual con-
strain |S|2 = 0, which take care of the time-independent nature 
of the length of the spin vector. Also it is interesting to note 
that Eq. (2) admits several integrable models when τh = 0 in the 
presence and in the absence of external magnetic field [12–14]
with chaotic excitations depending on the direction of the ap-
plied magnetic field with respect to the easy axis of magneti-
zation [15,16]. Nonlinear excitations of propagating electromag-
netic wave (EMW) in ferromagnetic medium were is investigated 
for the past two decades [17–21]. The theory of developing the 
one-dimensional solitons in ferromagnets rely on the existence of 
nonlinear Schrödinger equation governing the propagating modes. 
Many effective investigations have been developed to represent the 
propagating electromagnetic wave in the form of this equation and 
some of its generalization as multiscale expansion techniques of 
Landau–Lifshitz model coupled to the Maxwell’s equations [22–24]. 
In view of this the evolution of the magnetic field in the heli-
magnetic medium is governed by Maxwell equations which reduce 
to [25]

−∇(∇ · H) + ∇2H = 1

c2

∂2

∂t2
(H + S). (4)

In Eq. (4), c = 1/
√

μ0ε0 is the velocity of the propagating EMW in 
the helimagnetic medium. Thus we have the coupled equations (2)
and (4) that completely govern the dynamics of the propagation 
EMW and the spin excitations of the helimagnet.

3. Reduction to generalized derivative nonlinear Schrödinger 
equation

In many cases the treatment of the Landau–Lifshitz and Max-
well equations are rigorous to solve as such due to the highly 
vector and nonlinear nature of the governing equation [23,24]. 
Thus we are often intended to invoke asymptotic or perturbation 
technique to resolve the Maxwell–Landau (ML) model to a solvable 
scalar nonlinear equations. For reducing the ML system, in the long 
wave and small amplitude approximation the multiscale technique 
is introduced through a small parameter ε measuring the small-
ness and largeness of the fields. For this we expand the spin and 
magnetic fields as power series of ε in a nonuniform way as fol-
lows:

Kz = K0 + εKz
1 + ε2Kz

2 + ..., (5)

Kα = √
ε
[
Kα

1 + εKα
2 + ...

]
. (6)

The function K takes the spin S, external magnetic field H vari-
ables and also functions of the slow variables ζ = ε(z − V t), 
τ = ε2t and α = x, y. The V being the velocity of the propagat-
ing pulse. We also assume that the spin exchange interaction and 
the helicity effects are more stronger which can be expressed by 
rescaling J → ε−1 J , τh → ε−2τh and B → εB . The above expan-
sions (5) and (6) are reported in Eqs. (2) and (4) and collects
different orders of ε .

3.1. A steady-state solutions

The zeroth order of the perturbation normally represents the 
steady-state solutions which can be deduced from the correspond-
ing terms in the Maxwell equation (4). The x and y component 
of the spin and magnetic fields admits linear variation and from 
Landau equation the zeroth order terms are identically satisfied by 
using the results obtained from Eq. (4). Thus we have at the O (ε0): 
Hx

1 = r′ Sx
1, H y

1 = r′ S y
1 , H0 = −S0, where r′ = V 2

(c2−V 2)
≡ H0

S0 .

3.2. Generalized derivative NLS equation

Having obtained the steady-state solution, the evolution of spin 
and magnetic fields turn around x–y plane at higher orders. Thus 
at O (ε1):

∂

∂ζ

[
Hx

2 − r′Sx
2

] = −∂ Sx
1

∂τ
, (7)

∂

∂ζ

[
H y

2 − r′S y
2

] = −∂ S y
1

∂τ
. (8)

In Eqs. (7) and (8), τ is rescaled as τ → (2r′(1 + r′)/V )τ and 
H z

1 = −Sz
1. The corresponding order in the Landau equation for the 

z-component is written as follows:

r′μS0 ∂

∂τ

(−iS y
1

) = V
∂2

∂ζ 2

(
iSx

1

)

+ J S0 ∂3

∂ζ 3

(−iS y
1

) + B S0 ∂

∂ζ

(−iS y
1

)

+ 4τhq2
a S0

{
4

(
Sx

1
∂2 S y

1

∂ζ 2
− S y

1

∂2 Sx
1

∂ζ 2

)
∂

∂ζ

(
iSx

1

)



Download	English	Version:

https://daneshyari.com/en/article/1859763

Download	Persian	Version:

https://daneshyari.com/article/1859763

Daneshyari.com

https://daneshyari.com/en/article/1859763
https://daneshyari.com/article/1859763
https://daneshyari.com/

