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In this Letter, we firstly propose an epidemic network model incorporating two controls which are 
vaccination and treatment. For the constant controls, by using Lyapunov function, global stability of the 
disease-free equilibrium and the endemic equilibrium of the model is investigated. For the non-constant 
controls, by using the optimal control strategy, we discuss an optimal strategy to minimize the total 
number of the infected and the cost associated with vaccination and treatment. Table 1 and Figs. 1–5 are 
presented to show the global stability and the efficiency of this optimal control.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the main aim of researchers is to analyze and predict the consequences of the strategies designed to control infections 
disease. Mathematical models have become important tools in analyzing the spread and control of infectious disease. It’s well known that 
vaccination and treatment are two important factors for preventing and controlling the epidemic outbreak. In order to study the role of 
these two controls, researchers have proposed various mathematical models such as the conventional models, delayed models, impulsive 
models and stochastic models (see [1–9] and the references therein). These models include SIS models [1,2], SIR models [3,4], SIRS models 
[5,6] and some other models [7–9].

However, we notice that most of the above mentioned literatures emphasize the qualitative analysis such as seeking the so-called basic 
reproduction number and discussing the existence and the stability of equilibria and periodic orbits. Actually, another important way to 
control epidemic outbreak is the optimal control theory, which pays attention to define a strategy to control the disease and obtain the 
best possible result. It’s well known that there is a great variety of epidemic models and problems which can be treated with optimal con-
trol theory. For example, west Nile virus, tuberculosis, avian influenza, rabies, and so on. In [10], Zaman et al. found an optimal vaccination 
regime for the SIR model with the percentage of a vaccinated individuals. In 2011, Kar et al. [11] focused on the study of a nonlinear 
mathematical SIR epidemic model with a vaccination. The authors of Ref. [12] discussed an SVI (Susceptibles-Vaccinated-Infectious) epi-
demic model with treatment and found the optimal strategy to minimize both the disease burden and the intervention costs. In this 
Letter, we consider the following SIRS epidemic model with vaccination and treatment

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −λS(t)I(t) + γ R(t) − u1 S(t) + ωu2 I(t),

dI(t)

dt
= λS(t)I(t) − δ I(t) − u2 I(t),

dR(t)

dt
= δ I(t) − γ R(t) + u1 S(t) + (1 − ω)u2 I(t),

(1.1)
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where the parameters λ, δ, γ and u1, u2 are positive constants in which λ is the transmission rate when susceptible individuals contact 
with infectious, δ is the natural recovered rate from infection and γ is the rate when recovered individuals move into the susceptible 
once more. Differently from the traditional SIRS epidemic model, (1.1) incorporates two kinds of controls described by u1 S(t) and u2 I(t). 
Here u1 means the percentage of vaccination given to susceptible individuals at time t . We assume that vaccination is effective and the 
vaccinated become recovered. Also, u2 is the percentage of treatment given to infectious at time t . We suppose that only ωu2 I(t) would 
become susceptible at time t due to the limitation of treatment condition, whereas there are (1 − ω)u2 I(t) would become recovered at 
time t , and ω ∈ [0, 1].

As we know, most traditional epidemic models suppose that individuals mix uniformly and all individuals have the same rates of 
disease-causing contacts. This over-simplified assumption makes the analysis tractable but not realistic. Actually, the interpersonal contact 
patterns underlying disease transmission can be thought of expanding a complex network, where relations (edges) join individuals (nodes) 
who interact with each other. The connectivity k of a node is defined as the number of links connected to the node. The degree distribution 
of a network p(k) is defined as the probability of a randomly chosen node to have a degree k. Based on the above, many epidemic models 
on complex networks (see [13–21]), were studied. For the mechanism of the spreading of epidemic on complex networks, different 
researcher gave different explanations. Many networks relevant to the epidemic spreading are heterogeneous, including the BA scale-free 
network [21], which the degree distribution follows a power law p(k) ∼ k−σ . However, to the best of the authors’ knowledge, until this 
day, seldom did scholars consider the following SIRS epidemic studied (1.1) on complex networks. Motivated by the above, in this Letter, 
we firstly propose the following epidemic network model:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dSk(t)

dt
= −λkSk(t)Θ(t) + γ Rk(t) − u1 Sk(t) + ωu2 Ik(t),

dIk(t)

dt
= λkSk(t)Θ(t) − δ Ik(t) − u2 Ik(t),

dRk(t)

dt
= δ Ik(t) − γ Rk(t) + u1 Sk(t) + (1 − ω)u2 Ik(t), k = 1,2, . . . ,n,

(1.2)

where the parameters λ, γ , δ, u1, u2 and ω have the same biological meaning as those in (1.1). k describes the degree of the com-
plex networks. In this section, it is assumed that the connectivity of nodes on the network is uncorrelated, thus, we have Θ(t) =

1
〈k〉

∑n
k=1 kp(k)Ik(t) where 〈k〉 = ∑n

k=1 kp(k) is the average degree of the network and p(k) is the connectivity distribution.
On the other hand, nowadays people pay much attention to prevent or reduce the spread of infectious diseases on networks. In [22], 

the authors studied an epidemic model including susceptible, infected and imperfectly vaccinated compartments on several kinds of 
networks. The epidemic threshold and prevalence are analyzed. In [23], the authors considered a variant of SIS model defined on scale-free 
metapopulation networks, wherein the curing rate in a node with degree k is proportional to kα . An optimal control strategy to suppress 
epidemic explosion is studied. Both of [22] and [23] only present the epidemic threshold and don’t show the stability of the epidemic-free 
equilibrium and the unique positive equilibrium. In [24], the authors study the global stability and optimal control of an SIRS epidemic 
model on heterogeneous networks. But we notice that they discuss only one kind of control, i.e., vaccination, and neglect the other kind 
of control: treatment. Motivated by the above, in this paper, we shall study the global stability of the system (1.2). Also we shall show 
that an optimal control exists for the control problem when the vaccinated percentage u1 and the treated percentage u2 are considered 
as two continuous functions on time t . Because of incorporating two controls, the proposed model in this Letter is more reasonable than 
that of [24]. The results we obtained improve and supplement those of [24].

From the view point of biology, we only need to focus our discussion on the positive solution of system (1.2). So it is assumed that the 
initial conditions of (1.2) are of the form

Sk(0) > 0, Ik(0) > 0, Rk(0) > 0, k = 1,2, . . . ,n. (1.3)

One can easily show that the solution of (1.2) with the initial condition (1.3) are defined for all t > 0.
The organization of this Letter is as follows. In Section 2, for (1.2), by using Lyapunov function, we obtain the sufficient conditions 

which ensure the global attractivity of the epidemic-free equilibrium and the unique positive equilibrium of the system. In Section 3, the 
analysis of optimization problem is presented. In Section 4, numerical simulations are presented to illustrate the feasibility of our main 
results. In the last section, we give a brief discussion.

2. Global stability of (1.2)

In this section, we shall study the global stability of (1.2) with the initial conditions (1.3). From (1.2), we have d
dt (Sk(t) + Ik(t) +

Rk(t)) = 0, k = 1, 2, . . . , n. By simple probabilistic reasoning, we suppose that

Sk(t) + Ik(t) + Rk(t) = 1, k = 1,2, . . . ,n. (2.1)

In other words, we only consider a network of identical populations in this Letter. In order to investigate the global stability of (1.2), 
we only need to study the global stability of the following system:

⎧⎪⎪⎨
⎪⎪⎩

dSk(t)

dt
= −λkSk(t)Θ(t) + γ

(
1 − Sk(t) − Ik(t)

) − u1 Sk(t) + ωu2 Ik(t),

dIk(t)

dt
= λkSk(t)Θ(t) − δ Ik(t) − u2 Ik(t), k = 1,2, . . . ,n.

(2.2)
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