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It is experimentally known that virus exhibits stochastic motion in cytoplasm of a living cell in the free 
form as well as the form being contained in the endosome and the exponent of anomalous diffusion 
of the virus fluctuates depending on localized areas of the cytoplasm. Here, a theory is developed for 
establishing a generalized fractional kinetics for the infection pathway of the virus in the cytoplasm 
in view of superstatistics, which offers a general framework for describing nonequilibrium complex 
systems with two largely separated time scales. In the present theory, the existence of a large time-
scale separation in the infection pathway is explicitly taken into account. A comment is also made on 
scaling nature of the motion of the virus that is suggested by the theory.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the infection pathway of adeno-associated 
viruses in living HeLa cells has experimentally been studied by 
making use of the technique of real-time single-molecule imaging 
[1,2]. (Here, the adeno-associated virus is a small virus particle, 
and the HeLa cell is a line of human epithelial cells.) Remark-
ably, an exotic phenomenon has been observed in cytoplasm of 
the living cell. In the experiments [1,2], the virus solution of low 
concentrations was added to a culture medium of the living cells. 
Then, the trajectories of the viruses, each of which is labeled with 
fluorescent dye molecule, in the cytoplasm were analyzed. The 
experiments show that the fluorescent viruses exhibit stochastic 
motion in the free form as well as the form being contained in the 
endosome (i.e., a spherical vesicle).

Let us denote the mean square displacement in stochastic mo-
tion by x2. It behaves as

x2 ∼ tα, (1)

for large elapsed time, t , in general. Normal diffusion leads to 
α = 1, while 0 < α < 1 (α > 1) corresponds to subdiffusion (su-
perdiffusion). The experimental result shows that the mean square 
displacement of the fluorescent virus exhibits not only normal dif-
fusion but also subdiffusion in the form of Eq. (1). However, what 
is truly remarkable is the fluctuations of α in the case of subdiffu-
sion [1]: α fluctuates between 0.5 and 0.9, depending on localized 
areas of the cytoplasm. This may be due to existence of obstacles 
in the cytoplasm, not the forms of existence of the virus (i.e., being 
free or contained in the endosome) [1,2]. Thus, this phenomenon 

is seen to manifest the heterogeneous structure of the cytoplasm as 
a medium for stochastic motion of the virus.

The phenomenon mentioned above is in marked contrast to 
traditional anomalous diffusion [3] discussed for a variety of phys-
ical systems, examples of which are particle motion in turbulent 
flow [4], charge carrier transport in amorphous solids [5], the flow 
of contaminated vortex in fluid [6], chaotic dynamics [7], porous 
glasses [8]. On the other hand, in biology, a lot of efforts have 
been devoted to understanding the virus infection process in order 
to both design antiviral drug and develop efficient gene therapy 
vectors.

The purpose of this paper is to develop a theoretical frame-
work for establishing a generalized fractional kinetics proposed in 
Ref. [9], where the infection pathway of the adeno-associated virus 
in the cytoplasm of the living HeLa cell is studied by generalizing 
traditional fractional kinetics [10]. For this purpose, we base our 
consideration on the idea of superstatistics. Superstatistics, which 
has been introduced in Ref. [11] after some preliminary works 
in Refs. [12–14], is “statistics of statistics” with two largely sep-
arated time scales and offers a unified theoretical framework for 
describing nonequilibrium complex systems with two such time 
scales. A prototype system in superstatistics [11,13] is a Brownian 
particle moving through a fluid environment with varying temper-
ature on a large spatial scale. This system is divided into many 
small spatial “cells”, each of which is in local equilibrium charac-
terized by each value of temperature. So, the Brownian particle in 
a given cell moves to neighboring ones. Then, variation of the lo-
cal fluctuations of temperature is slow, whereas relaxation of the 
Brownian particle in a cell to a local equilibrium state with a given 
value of temperature is fast. Consequently, the system on a long 
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time scale is described by a superposition of two statistics asso-
ciated with these different dynamics. The situation we consider 
here is that the virus moves through the cytoplasm with vary-
ing local fluctuations of the exponent, α, in Eq. (1). We assume 
that there is a large separation of two time scales in the infec-
tion pathway: the time scale of variation of exponent fluctuations 
is much larger than that of stochastic motion of the virus in a lo-
calized area of the cytoplasm. This is in analogy with the existence 
of two largely separated time scales in superstatistics. From the 
viewpoint of superstatistics, we describe the motion of the virus 
by a superposition of two different statistics: one is statistics con-
cerning stochastic motion of the virus in a localized area of the 
cytoplasm, and the other is one associated with variation of ex-
ponent fluctuations. For the virus in each localized area, we apply 
fractional kinetic theory, which generalizes Einstein’s approach to 
Brownian motion [15]. Proposing the statistical form of the fluc-
tuations of the exponent based on the experimental data as well 
as the maximum entropy principle [16], we show that the present 
framework yields the generalized fractional kinetic theory. We also 
make a comment on a scaling law for the motion of the virus that 
is suggested by the theory.

2. Stochastic motion of the virus in the cytoplasm and 
superstatistics

Let us start our discussion with considering 1-dimensional 
stochastic motion of the virus in the cytoplasm with slowly vary-
ing local fluctuations of the exponent, α. We describe it in view 
of superstatistics. To do so, we regard the cytoplasm as a medium 
for stochastic motion of the free virus as well as the virus con-
tained in the endosome. Then, we imaginarily divide the medium 
into many small blocks, each of which is identified with a localized 
area of the cytoplasm. As already mentioned in the Introduction, 
the time scale of variation of the fluctuations is supposed to be 
much larger than that of stochastic motion of the virus in each lo-
cal block. In other words, α is approximately constant while the 
virus moves through the blocks. For the virus in a local block with 
a given value of α, we describe the probability of finding the virus 
in the interval [x, x + dx] at time t by fα(x, t)dx. Denoting the sta-
tistical distribution of the fluctuations of α by P (α), we describe 
the probability of finding the virus on a long time scale by the 
average of fα(x, t)dx with respect to P (α):

f (x, t)dx = dx

∫
dαP (α) fα(x, t). (2)

Eq. (2) clearly shows that the statistical property of the virus in 
the cytoplasm is given by the superposition of fα(x, t)dx with re-
spect to P (α) in conformity with the viewpoint of superstatistics.

In what follows, we first formulate a generalized fractional ki-
netic theory, in which the statistical fluctuation of the exponent is 
incorporated, based on Eq. (2).

We express fα(x, t)dx in Eq. (2) in terms of f (x, t)dx based on 
the scheme of continuous-time random walks [17]:

fα(x, t)dx = dx

∞∫
−∞

dΔ

t∫
0

dτ f (x + Δ, t − τ )φτ (Δ)ψα(τ )

+ δ(x)R(t)dx. (3)

Here, the first term on the right-hand side stands for all of possi-
ble probabilities that the virus moves into the interval from outside 
or stays in the interval. The second term is a partial source guar-
anteeing the initial condition, f (x, 0) = δ(x), and R(t) describes a 
time-dependent partial source with the condition, R(0) = 1. Then, 
φτ (Δ) is the normalized probability density distribution for a dis-
placement, Δ, in a finite time step, τ . This distribution is sharply 

peaked at Δ = 0 and satisfies the condition, φτ (Δ) = φτ (−Δ). 
ψα(τ ) is the normalized probability density distribution for τ , 
which is treated as a random variable, and satisfies the condi-
tion, ψα(0) = 0. As will be seen below, it is implied that this 
distribution decays as a power law characterized by α ∈ (0, 1) for 
long time step [see the discussion after Eq. (6) below]. From the 
normalization condition on f (x, t), it is found that R(t) is con-
nected to ψα(τ ) through the relation: R(t) = 1 −∫ t

0 dτψα(τ ) [from
which R(t) depends on α]. In our later discussion, we shall show 
how the present theory yields traditional fractional kinetics [10], 
which turns out to reproduce both normal diffusion and subdiffu-
sion with a fixed exponent observed in the experiments.

Now, it seems that the nature of subdiffusion observed in the 
experiments comes from ψα(τ ), not φτ (Δ). Therefore, we assume 
in what follows that φτ (Δ) is actually independent of time steps: 
φτ (Δ) = φ(Δ). To formulate the generalized fractional kinetic the-
ory, we employ the Laplace transforms of Eqs. (2) and (3) with 
respect to time:

f̃ (x, u) =
∫

dαP (α) f̃α(x, u), (4)

f̃α(x, u) =
∞∫

−∞
dΔ f̃ (x + Δ, u)φ(Δ)ψ̃α(u) + δ(x)

1 − ψ̃α(u)

u
, (5)

where f̃ (x, u), f̃α(x, u), and ψ̃α(u) are the Laplace transforms of 
f (x, t), fα(x, t), and ψα(τ ), respectively, provided that L(g)(u) =
g̃(u) = ∫ ∞

0 dt′ g(t′)e−ut′ .
In analogy with the discussions in Refs. [18,19], where the 

separation of the time scales in superstatistics is explicitly imple-
mented by the use of conditional concepts, we notice here the 
following point: in Eq. (4), the averaging over the slow variable, 
i.e., α, is taken after the integration over the fast variable, i.e., 
Δ, is performed. This procedure is opposite to that discussed in 
Ref. [9], where the integration over the fast variable is performed 
after the elimination of the slow variable. Thus, the existence of 
a large time-scale separation in the infection pathway is explicitly 
taken into account in the present procedure.

In Eq. (5), we suppose that ψ̃α(u) takes the following form:

ψ̃α(u) ∼ 1 − (su)α (6)

with a characteristic constant, s, which has the dimension of time. 
This characteristic time is an indicative one, at which the virus is 
displaced. We also impose the condition that ψα(τ ) has the di-
vergent first moment, which requires the exponent α to be in the 
interval (0, 1). Eq. (6) implies that ψα(τ ) decays as a power law 
like, ψα(τ ) ∼ sα/τ 1+α , for the long time step, τ � s, as mentioned 
earlier.

We expand f̃ up to the second order of Δ after substituting 
Eq. (5) into Eq. (4). Then, neglecting the term 〈Δ2〉 ∫ dαP (α)(su)α

with 〈Δ2〉 ≡ ∫ ∞
−∞ dΔΔ2φ(Δ) (u being small in the long time be-

havior), we have

f̃ (x, u) = 〈Δ2〉
2
∫

dαP (α)(su)α

∂2 f̃ (x, u)

∂x2
+ δ(x)

1

u
. (7)

Performing the inverse Laplace transform of Eq. (7), we obtain the 
following generalized fractional diffusion equation:∫

dαP (α)sα−1
0D−(1−α)

t
∂ f (x, t)

∂t
= D

∂2 f (x, t)

∂x2
, (8)

where the diffusion constant, D , is calculated to be D = 〈Δ2〉/(2s)
and a mathematical fact of fractional operator [10], L(0D−α

t g(x, t))
(u) = u−α g̃(x, u), has been used. For the virus in a given local 
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