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The final configuration of the magnetic field dragged by a plane conducting flow such that the feet 
of the field lines are fixed at the boundary is studied by asymptotic analysis on the small magnetic 
diffusivity. The first order approximation yields that the streamlines become also magnetic field lines 
and the magnetic potential satisfies an ordinary differential equation on the transversal variable whose 
boundary values are found by the addition of a boundary layer. It turns out that these values correspond 
to certain averages along the boundaries, except when there exist stagnation points, which dominate 
the magnetic potential diffusion. Corners of the boundary curves behave differently, because stagnation 
points there disappear after straightening the curve by a change of variables that also kills the zero of 
the velocity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Following the seminal work of Hartmann and Lazarus in [1]
about a transversal magnetic field acting as a brake on a con-
ducting viscous flow, the topic of a conducting fluid near a plate 
has generated an enormous amount, probably even excessive, of 
literature, accounting for every possibility including suction, heat 
transfer, gravitational effects, rotation, etc. In the overwhelming 
majority of these papers the magnetic field is assumed unaffected 
by the flow, a hypothesis lacking real substance and mainly mo-
tivated by the desire to avoid the mathematical complication of 
adding Maxwell’s equations to the problem. Refs. [2–4] are sophis-
ticated contributions to this literature, while e.g. [5–7] also allow 
for a variable magnetic field. We intend to study the reciprocal 
problem: taking the flow as independent of the magnetic field, 
where does the evolution of this lead to? The technique of taking 
the fluid velocity for granted and considering only the magnetic 
field evolution as predicted by the induction equation is classi-
cal and much used e.g. in kinematic dynamo theory (see e.g. [8]). 
It is based on the assumption that the Lorentz force may either 
be ignored because the magnetic field is much weaker than the 
strength of the flow or because the current density is parallel to 
the field, as it occurs in force-free configurations. Whatever the 
reason, the magnetic field B is governed by the magnetohydrody-
namic induction equation
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∂B

∂t
= ε�B + ∇ × (v × B), (1)

where v represents the velocity and ε the resistivity (or, in 
adimensional variables, the magnetic diffusivity). Additionally, 
∇ · B = 0, so that B derives from a vector potential. In analogy to 
the Hartmann setting, we will consider the two-dimensional case 
where both v and B lie in the XY plane and depend only on (x, y). 
Then we may take a scalar potential A(t, x, y) such that the vector 
potential may be written as

A = (0,0, A). (2)

In general (1) is identical to

∇ ×
(

∂A

∂t

)
= ε∇ × �A + ∇ × (

v × (∇ × A)
)
, (3)

which may be uncurled in simply connected sets to yield

∂A

∂t
= ε�A + (

v × (∇ × A)
) + ∇Φ, (4)

where Φ is a gauge potential. With our hypothesis (2), ∇Φ is ver-
tical and independent of z, so that ∇Φ = (0, 0, λ(t)). If we define

Λ(t) =
t∫

0

λ(s)ds, (5)

and take instead of A the new scalar potential A − Λ(t), we may 
omit Φ from the following calculations. Denoting this new poten-
tial again by A, we have v × (∇ × A) = (−v · ∇ A)ẑ, so that (4)
becomes a simple transport plus diffusion equation:
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∂ A

∂t
= ε�A − v · ∇ A. (6)

To this equation, initial and boundary conditions must be added. 
Assuming the domain Ω , the velocity v and the boundary condi-
tion A|∂Ω = f to be all independent of time, it is a well known 
result that the solution of (6) tends to the unique solution of

ε�A − v · ∇ A = 0

A|∂Ω = f (7)

(see e.g. [9], pp. 157–164). It is true that the convergence gets 
slower when ε decreases, and we are interested in plasmas of 
small diffusivity, the most usual in astrophysical and fusion phe-
nomena. Nonetheless, the limit state is given by the solution of 
the elliptic problem (7). The domain represents the channel where 
the flow occurs, so that we take it as bounded by two curves Γ1, 
Γ2 immovable by the flow; we also assume that there are no stag-
nation points (v = 0) inside Ω , although we will admit isolated 
stagnation points at ∂Ω . Since we do not include regions of in-
flow and outflow of the fluid, this is assumed to flow cyclically. In 
fact sources and sinks could be included, since the boundary lay-
ers for those are well known (see e.g. [10]), but they would add 
only unrelated complications to our discussion, whose main in-
terest lies in boundary curves which are themselves streamlines. 
Since the magnetic field lines are the level sets A = const., the 
boundary condition A|∂Ω = f means that the feet of them are 
fixed, i.e. that the field is anchored at the boundary. One of the 
curves Γi may disappear if the flow is limited to a simply con-
nected set; in that case we allow for a single stagnation point 
inside Ω , which is a center of the flow. We will study (7) by means 
of an asymptotic analysis on the small parameter ε . The math-
ematical treatment is considerably complex, and it is related to 
the exit problem in stochastic fluid flows. The first and substantial 
study is [11], where the geometry was Cartesian, with periodic-
ity in one variable, and no critical points of the velocity. Critical 
points at the boundary with this same geometry were allowed and 
analyzed in [12], where the asymptotic form of the boundary con-
dition may be found. The problem for flows surging from within 
the domain and flowing through its boundary is studied in [13]; 
flows entering and leaving the domain are considered in [14], and 
the flow-invariant simply connected domain case without critical 
points (except for the center) is studied in [15]. Most of the neces-
sary mathematics (except for the simple connection hypothesis) for 
our study may be found in [16], but we will simplify and recon-
struct some not so clear arguments about the spectral analysis of 
non-self-adjoint differential operators. Further generalizations oc-
cur in [17]. The paper will be mostly self-contained as far as the 
equations satisfied by the leading order term, but for the asymp-
totic expression of the boundary conditions we will refer to [12].

2. The first order approximation

With our hypotheses, streamlines fill Ω . Let them be indexed 
by the coordinate r, so that the boundaries are given by Γi : r = ri . 
The other coordinate s is the arc length along each streamline, go-
ing from 0 to the length Lr of the line indexed by r. The origin of 
s is arbitrary, but taken so that the bijection

Ω̄ → {
(r, s) : r1 ≤ r ≤ r2, 0 ≤ s ≤ Lr

}
(x, y) → (r, s), (8)

is smooth. Although conscious of the notation abuse it involves, we 
will also denote by A(r, s) the function A(x(r, s), y(r, s)). Since A
is a solution of (7), in the new coordinates A satisfies

ε

(
a11

∂2 A

∂r2
+ 2a12

∂2 A

∂r∂s
+ a22

∂2 A

∂s2
+ c1

∂ A

∂r
+ c2

∂ A

∂s

)
+ b

∂ A

∂s
= 0

A(r1, s) = f1(s), A(r2, s) = f2(s), (9)

where

a11 = |∇r|2, a12 = ∇r · ∇s, a22 = |∇s|2
c1 = �r, c2 = �s, b = |v|. (10)

As usual in asymptotic analysis, we start assuming that the solu-
tion may be expanded in powers of ε:

A ∼ A0 + ε A1 + ε2 A2 + . . . (11)

It is proved that this expansion is valid in the previously cited lit-
erature. In particular,

A = A0 + O (ε). (12)

The term in O (ε) is in general not uniform in Ω , but it may be 
taken fixed in every compact subset of it. In particular this im-
plies that A0 tends uniformly to A in the compact subsets of Ω as 
ε → 0.

Inserting (11) in (10) and equating powers of ε , we find for the 
exponent zero that A0 satisfies

b
∂ A0

∂s
= 0, (13)

which means, taking into account that v �= 0 within the domain, 
that A0 is constant in the streamlines, i.e. A0 = A0(r). For the ex-
ponent one, we get

b
∂ A1

∂s
= −

(
a11

∂2 A0

∂r2
+ 2a12

∂2 A0

∂r∂s
+ a22

∂2 A0

∂s2

+ c1
∂ A0

∂r
+ c2

∂ A0

∂s

)

= −
(

a11
∂2 A0

∂r2
+ c1

∂ A0

∂r

)
. (14)

This may be seen as a definition of A1, but for it to be correct we 
must take into account that A1 must be Lr -periodic in the vari-
able s. Hence the integral of ∂ A1/∂s between 0 and Lr must be 
zero, which following (14) means

( Lr∫
0

a11

b
ds

)
∂2 A0

∂r2
+

( Lr∫
0

c1

b
ds

)
∂ A0

∂r
= 0. (15)

Since b may be small at some points, it is convenient to normalize 
(15) by dividing both terms by the integral of the inverse of the 
velocity size. Thus, defining the averages

α(r) =
( Lr∫

0

a11

b
ds

)( Lr∫
0

1

b
ds

)−1

β(r) =
( Lr∫

0

c1

b
ds

)( Lr∫
0

1

b
ds

)−1

, (16)

we reach the final equation satisfied by A0:

αA′′
0 + β A′

0 = 0, (17)

where ′ denotes derivation with respect to the unique variable r
of A0. Also

|α| ≤ sup |a11|, |β| ≤ sup |c1|. (18)
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