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For heterogeneous materials, obtaining an accurate statistical description has remained an outstanding 
problem. We accurately evaluate the three-point microstructural parameter that arises in third-order 
bounds and approximations of effective material properties. We propose new adaptive methods for 
computing n-point probability functions obtained from three-dimensional microstructures. We show that 
for highly packed systems our methods result in a 45% accuracy improvement compared to the latest 
techniques, and third-order approximations agree well with simulation data. Furthermore, third-order 
estimates of the effective behavior are computed for tomographically characterized systems of highly 
filled polydisperse ellipsoids and cuboids for the first time.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The accurate characterization of many-body systems is a long 
studied problem with applications in many scientific fields at a va-
riety of length scales from molecular arrangements [1,2] up to het-
erogeneous material microstructures [3] and celestial bodies [4–6]. 
Often, these systems have varying degrees of randomness at short 
and long range scales and often only lend themselves to statistical 
characterization. However, obtaining accurate higher order statisti-
cal correlations of many-body systems has proved difficult and is a 
limiting factor in understanding their physical processes.

Of particular interest in this Letter is determining effective 
transport and mechanical properties of many particle compos-
ites from higher order statistical data, which is a fundamental 
problem that has captured the attention of great minds includ-
ing Einstein [7] and Maxwell [8]. The past fifty years have seen 
the formulation of rigorous bounds and approximations relying 
on a higher order statistical description of microstructures [9–12]. 
Especially third-order models have shown good agreement with 
experimental data [3]. While many theoretical advancements have 
been made for both linear and nonlinear material behavior [3,13,
14], demonstration of these theories has been severely restricted 
to strong microstructural assumptions due to difficulties in accu-
rately characterizing complex configurations. Various approxima-
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tions have been formulated to describe complex configurations of 
random spheres [15–17], but direct computation of the statistical 
functions in three dimensions with resolution required in third-
order models has been elusive.

In this Letter, we present adaptive methods rooted in compu-
tational mechanics and high performance computing for efficiently 
obtaining statistical functions without utilizing approximations of 
the shape and spatial configuration for random particulate systems. 
Third-order bounds and approximations of the effective thermal 
conductivity are computed using this high-fidelity statistical de-
scription. These computational methods, which we rigorously ver-
ify, allow for computation of statistical descriptors directly from 
complex three-dimensional microstructures with unprecedented 
accuracy. We show that previously formulated approximations of 
these statistical functions for systems of impenetrable monodis-
perse spheres result in significant inaccuracies, especially at higher 
volume fractions. Moreover, we extend these methods to other 
shapes, e.g. crystals, while accounting for degree of polydispersity. 
For the first time, we compute third-order bounds and approxi-
mations of the effective thermal conductivity for tomographically 
characterized three-dimensional packs of polydisperse ellipsoids 
and cuboids.

2. Theory of effective material behavior

In this Letter, we explore the effective behavior of steady-state 
heat conduction described by the conservation of energy assum-
ing Fourier’s law. Utilizing the variational principles of minimum 
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energy and minimum complementary energy assuming ergodic-
ity, statistical and material isotropy, Beran [18] derived third-order 
bounds of the effective conductivity, κe . Torquato [19] and Mil-
ton [10] independently simplified these bounds for two-phase 
composites to κ L ≤ κe ≤ κU , where

κ L = cpκp + cmκm − cmcp(κp − κm)2

cmκp + cpκm + 2
( ζp
κp

+ ζm
κm

)−1
. (1)

In this formulation, the bounds depend on the individual phase 
conductivities κi (i = m (matrix) or p (particle)), the volume frac-
tions ci , and the microstructure parameters ζi . This microstructural 
parameter depends on the one-, two- and three-point probability 
functions (Si = ci , Sii , and Siii ) and is defined as

ζi = 9

2cpcm

∫
3 cos2 θ − 1

2r1r2
S̃ iii(r1, r2, θ)d(cos θ)dr1 dr2, (2)

where

S̃ iii(r1, r2, θ) = Siii(r1, r2, θ) − Sii(r1)Sii(r2)

ci
. (3)

For isotropic two-phase systems, Torquato [20] derived a three-point
approximation (TPA) that has shown good agreement with simula-
tions [21]. This estimate is given as

κe

κm
= 1 + 2cpβpm − 2cmζpβ2

pm

1 − cpβpm − 2cmζpβ2
pm

, (4)

where

βpm = κp − κm

κp + 2κm
. (5)

While these bounds and approximations were derived decades 
ago, progress has been slow in accurately determining the mi-
crostructural parameter ζi (Eq. (2)) due to difficulties in computing 
the n-point probability function in Eq. (3). For highly filled ran-
dom particulate composites, no one has been able to compute 
the probability functions from three-dimensional domains with the 
fidelity required by these third-order models. As analytical expres-
sions of the n-point probability functions do not generally exist for 
composites with random configurations, a Monte Carlo-based sta-
tistical sampling algorithm is utilized. The accuracy of this method 
is O(1/

√
Nr), where Nr is the number of random samples used to 

compute one function value of Siii(r1, r2, θ), Sii(r), or Si . A ran-
dom sample consists of a random translation (described by 3 posi-
tion values) and random rotation (described by three angles) of a 
(n − 1)-simplex within the three-dimensional material domain. To 
speed up the analysis, we use high performance computing, where 
the Nr random samples are decomposed on O(103) computing 
cores. Others [22,23] have attempted a Monte Carlo sampling strat-
egy to compute the probability functions, but on regular structured 
grids.

3. Adaptive interpolation and sampling method

Since computations on a structured grid are inefficient, we 
propose an adaptive triangulation technique. This method in-
volves iteratively constructing a Delaunay triangulation of tetra-
hedrons, which we will refer to as T , to create an interpolant 
of S̃ iii(r1, r2, θ) with C0 continuity. Summarizing the algorithm, 
an initial regular tetrahedral grid is constructed for the domain 
[r1 = 0, r1 = r∞] × [r2 = 0, r2 = r1] × [θ = 0, θ = π ] (note that 
this is half of the integration domain since the function is sym-
metric about the axis r1 = r2). This triangulation and associated 

Fig. 1. Illustration of resulting adaptive triangulation of S̃ iii(r1, r2, θ) for system of 
impenetrable monodisperse spheres with cp = 0.6.

function values, S̃ iii(r1, r2, θ) which appear in the integral ker-
nel of Eq. (2), define the initial interpolant Tl=0 (l is the adap-
tive iteration level). For a given iteration, a bisection method is 
used to refine the triangulation based on the local error of the 
statistics. For all tetrahedrons in a given iteration of the inter-
polant Tl , the local accuracy is evaluated at each edge midpoint 
by considering the difference between the interpolated and com-
puted probability functions. If an edge midpoint does not satisfy 
the error indicator function εa = ∣∣ S̃ iii(r1, r2, θ) − Tl(r1, r2, θ)

∣∣ < tol, 
where tol is a set tolerance, each edge of the tetrahedron is bi-
sected and added to Tl+1. If all midpoints in a tetrahedron satisfy 
εa , the tetrahedron is added to Tl+1 unchanged. This iterative 
process is repeated until all grid points satisfy the error indica-
tor function. After a convergence study, it was determined that 
tol = (1/200)max{ S̃ iii(r1, r2, θ)} results in low numerical error for 
all computations presented in this Letter. An example of the result-
ing triangulation for a highly filled (cp = 0.6) monodisperse system 
of spheres with diameter D is shown in Fig. 1. Note that this func-
tion is 0 in a majority of the domain, but sharp variations exist 
near the origin (r1 = 0, r2 = 0, θ = 0), along the diagonal r1 = r2
and near the edge of the domain where r1 = r2 = 0. The trian-
gulation for this example contains O(107) tetrahedrons with a 
minimum edge length of 2.78 · 10−17 D , a mean edge length of 
3.61 ·10−2 D , and a maximum edge length of 1.55D , thus revealing 
the wide range of length scales required for accurately represent-
ing this function. The resulting interpolant T is then used as the 
basis for computing ζi via simplex integration of Eq. (2). In this 
work, Monte Carlo integration of each tetrahedron is performed. A 
convergence study determined that using Nint = 1000 random in-
tegration points per tetrahedron is sufficient for all microstructures 
presented in this Letter. Given that there are O(107) tetrahedrons 
in a typical interpolant, O(1010) integration points are required to 
evaluate the integral (2).

4. Verification

The proposed adaptive triangulation technique is verified by 
considering a two-phase system of overlapping spheres, which is 
one of a few configurations where the n-point probability func-
tions of the matrix phase m can be defined analytically as:

Sm...m(x1, x2, . . . , xn) = exp(−ρVn) (6)

Here, ρ is the number density of spheres and Vn is the union 
volume of n spheres with diameter D . Considering four volume 
fractions of this model, ζm was computed with r∞ = 6D . The re-
sults and errors associated with the computations are provided in 
Table 1. An error measure is defined as εP S = ∣∣ζm − ζ R1

m

∣∣/ζ R1
m ×

100 [%], where ζm is the result from this work, and ζ R1
m is the 

most accurate result presented in the literature [24]. Note that all 
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