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Ginzburg–Wilson (LGW) theory. Interaction between skyrmion charge densities is shown to be short
ranged from a derived effective field model. The computed energy per single skyrmion of skyrmion lattice
suggests a long ranged lattice interaction.
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1. Introduction

Spin triplet p-wave superfluid phase of fermion systems, for
instance, 3He, support a lot of topological excitations [1]. Due to
the nature of the multi-component order parameter of the p-wave
pairing symmetry, it is possible to have different symmetry broken
phases and different topological excitations subjecting to various
boundary conditions. Among these topological excitations, a well-
known singular quantized vortex which has a core where the order
is destroyed but the phase of the order parameter is continuous
can be characterized by an integer valued winding number with
a singular topological charge density. However, in the rotating su-
perfluid 3He, in addition to the singular quantized vortex, there
is also a continuous topological texture which can trap 2 quanta
of circulation [2,3] with a continuous distribution of topological
charge density. This same situation may occur in the p-wave su-
perconductors. Such additional kind of topological excitation can
be stabilized in the presence of an external magnetic field H in a
range Hc1 < |H | < Hc2 between a lower critical field Hc1 and an
upper critical field Hc2 in the strong type II case. It is pointed out
by Knigavko et al. [4] and they refer to this kind of continuous
topological texture as a skyrmion. It is expected that skyrmions
would form a periodic structure-skyrmion flux lattice just as sin-
gular vortex does in the sufficiently strong magnetic field [5,6]. In
this case every single skyrmion in the area of a unit cell would
trap 2 quanta of magnetic flux and the order parameters would
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smoothly match at the unit cell perimeters. Considering recently
discovered candidates of p-wave superconductors, for instance,
quasi 2D ruthenate Sr2RuO4 [7] and NaxCoO2·yH2O [8], it is in-
teresting to investigate the properties of skyrmions and the lattice
they might form. More specifically, the nature of interaction be-
tween the skyrmion charges and the lattice they form should be
identified. These properties are helpful to distinguish them from
the traditional Abrikosov flux lattice [6,9].

In this Letter, firstly, to address the nature of the interaction
between skyrmion charges, we will derive an effective field theory
which can describe skyrmions in p-wave superconductors at the
lower critical field and we will explicitly show the interaction be-
tween the charge of the skyrmions is short-ranged. Secondly, we
will apply a numerical method-spectral method [10] to compute
the energy of a single skyrmion with finite size R in circular cell
approximation [11]. We will show that the energy per skyrmion
has a strong dependence on the lattice constant R . In the large
R limit, the leading 1/R dependence is consistent with the result
by Knigavko et al. [4] but with a slightly larger coefficient. This is
the signature that the interaction between the skyrmion lattice is
actually long-ranged.

2. Effective model of p-wave superconductors

The order parameter of a triplet superconductor takes a matrix
form [12]

Δ(k) =
[−d1(k) + id2(k) d3(k)

d3(k) d1(k) + id2(k)

]
(1)
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with k the momentum. This gap matrix Δ(k) has been parameter-
ized by a three-component complex vector function d(k). One of
the possible d(k) takes the following form,

d(k) = Δ0ê(m̂ + in̂) · k (2)

Here, ê is a unit constant vector in spin space, where m̂ and n̂
are orthogonal constant unit vectors in the orbit space with Δ0
the magnitude of the order parameter. This kind of parameteriza-
tion corresponds to the Anderson–Brinkman–Morel (ABM) state of
the superfluid phase of 3He or β phase if we exchange the index
of spin and orbit. In the following discussion, we will treat the
magnitude of the d(k) vector Δ0 to be a constant meaning the
system is deep inside the superconducting state or when the su-
perconductors are close to the Hc1 where this treatment (London
approximation) applies. In the later case, Δ0 can only vary rapidly
in a relatively small core whose length scale is set by the coher-
ence length ξ = 1/

√
2m|t| with m as the mass of the Cooper pair

and t as the coefficient of the quadratic term of Ginzburg–Landau
free energy density [9]. If we assume the spin degree freedom is
freezed, namely ê points to a specific direction everywhere but m
and n can fluctuate from their optimal directions, then the LGW
action density can be written in a natural unit (h̄ = c = 1)

LL = 1

2
(∂i l̂)

2 + (n̂∂im̂ − ai)
2 + b2 (3)

with magnetic induction b = ∇ × a(r) and a(r) as the reducted
vector potential. Here, a triad coordinate has been introduced by
the relationship l̂(r) = n̂(r)× m̂(r). The differential with respect to
the coordinate can be in the 3D space. In the following discussion,
for simplicity, we will ignore the z dependence of all the fields.
This corresponds to a perfect straight line structure in a bulk sam-
ple or a quasi 2D superconducting film. It should be noted that
we have introduced dimensionless quantities by measuring dis-
tances in units of penetration depth λ = √

m/4πq2〈Δ0〉2 with q
the charge of the Cooper pair and the action in units of Φ2

0 /32π3λ,
and we introduce a dimensionless vector potential a = 2πλA/Φ0,
with Φ0 = 2π/q the magnetic flux quantum.

The first term in Eq. (3) is identified as the O (3) nonlinear
sigma model which can support nontrivial topological excitations.
However, this term is scale invariant which means the excitation
with fixed energy has no stable size [13]. Although Eq. (3) looks
very complicated, the number of independent fields of the opti-
mal field configurations is only 2. This can be seen as follows.
Orthogonal unit vectors l̂, m̂ and n̂ form a triad coordinate and
thus number of independent components of these fields is 3. In
the presence of the flux quantization condition, vector potential a
has only 1 independent component. The two saddle point equa-
tions whose solution minimizes action density Eq. (3) will further
reduce independent components by 2. This will make overall num-
ber of independent components to be 2. To see this point more
explicitly, we will derive an effective field theory in terms of l̂ only
as the follows.

We now are looking for saddle-point solutions to Eq. (3). Con-
sidering l̂ and a independent variables, and minimize Eq. (3) with
respect to l̂ subject to the constraints l̂2 = n̂2 = 1 and l̂ · n̂ = 0
yields

∇2l̂ − l̂
(
l̂ · ∇2l̂

) + 2 J i(l̂ × ∂i l̂) = 0 (4a)

with

J = ∇ × b (4b)

the supercurrent. The derivative with respect to a is straightfor-
ward and yields a generalized London equation,

ai + J i = n̂∂im̂ (4c)

By assuming Coulomb gauge, the above set of equations can be
rewritten

bi − ∇2bi = 1

2
εi jk l̂ · (∂ j l̂ × ∂k l̂) (5a)

∇2l̂ − l̂
(
l̂ · ∇2l̂

) + 2εi jk∂ jbk(l̂ × ∂i l̂) = 0 (5b)

It should be noted to obtain Eq. (5a), we have applied Mermin–Ho
relation [14]. By assuming the magnetic induction points to the z
direction, the right-hand side of Eq. (5a) is l̂ field dependent only
and let it be referred as 4π Q (x). A further inspection of the ex-
pression of Q (x) shows that it measures how fast the coordinate
space R2 is wrapped onto a unit sphere l̂2 = 1 and thus related to
a winding number or topological charge density [13]. It is straight-
forward to express all the b dependence in Eq. (3) by the l̂ from
the relationship Eq. (5a). The result is very similar to the baby
skyrmion model in quantum hall ferromagnets [15] which has a
long-range interaction between topological charge densities,

LL = 1

2
(∂i l̂)

2 +
∫

d2r′ Q (r)Q
(
r′)V

(
r − r′) (6)

Here, the inter charge density potential V takes a form of a
modified Bessel function of the second kind 8π I0(r). It is not sur-
prising to see this result because if we fixed l̂, then the topological
charge density will naturally recover to a singular Dirac δ func-
tion, which leads to the familiar vortex flux case. This means in
the case of large separation, the skyrmion charge has a short-range
interaction just as the vortex does. It should be noted that the in-
teraction between skyrmion charges is repulsive, thus skyrmions
could form a lattice structure in the equilibrium state. It means
every skyrmion in the lattice state prefers an equilibrium size R .
This length scale has also to be determined by the flux quantiza-
tion condition and thus related to the external field. To correctly
account for this effect, Eq. (6) has to include the Zeeman energy-
coupling between the magnetic induction and the external field.
We will show how the skyrmion size is determined in the follow-
ing section.

3. Single skyrmion energy in a lattice structure with a lattice
constant R

It is difficult to directly analyze the skyrmion lattice configura-
tion form Eq. (6). We will approximate the unit cell of a skyrmion
lattice with hexagonal or square symmetry by an inscribed circle.
In another word, we are looking for a l̂ profile which possesses
cylindrical symmetry. To minimize the free energy, from Eq. (6),
l̂ has to point to a specific direction at large distance. We assume
this direction to be z direction. Due to the definition of topological
charge density Q (x) which is related to the stereographic projec-
tion, l̂ has to point −z direction at the origin. Then we can define
the angle between the z direction and l̂ to be θ(r). We will follow
the parameterization of the fields from Knigavko et al. [4],

l̂ = êz cos θ(r) + êr sin θ(r)

n̂ = (
êz sin θ(r) − êr cos θ(r)

)
sinϕ + êϕ cosϕ

m̂ = (
êz sin θ(r) − êr cos θ(r)

)
cosϕ − êϕ sinϕ

a(x) = a(r)êϕ (7)

where ϕ is the polar angle. Such parametrization has the property
that at the perimeter (θ = 0), the winding angle in n and m of
Eq. (7) is 2ϕ instead of ϕ . This means every skyrmion traps 2Φ0
flux.
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