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In the present work we study the soliton–antisoliton interaction in an anisotropic easy-plane magnetic 
wire forced by a transverse uniform and oscillatory magnetic field. This system is described in the 
continuous framework by the Landau–Lifshitz–Gilbert equation. We find numerically that the spatio-
temporal magnetization field exhibits both annihilative and repulsive soliton–antisoliton interactions. We 
also describe this system with the aim of the associated Parametrically Driven and Damped Nonlinear 
Schrödinger amplitude equation and give an approximate analytical solution that roughly describes the 
repulsive interaction.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Localized states are observed in different systems, e.g., chiral 
bubbles in liquid crystals, current filaments in gas discharges, spots 
in chemical reactions, localized states in fluid surface waves, os-
cillons in granular media, isolated states in thermal convection, 
and solitary waves [1,2]. The simplest dynamic localized struc-
ture that appears in a restricted spatial region and that connects 
asymptotically time-independent states in the rest of the space is 
called soliton [1]. In magnetism, the state of the art for conserva-
tive and for dissipative systems can be found in Refs. [3–5]. Here, 
we study ferromagnetic dissipative systems that can have spatially 
localized, stable, dynamic excitations [4]. Here we are interested 
in dissipative solitons. These perturbations were found experimen-
tally in magnetic systems [6,7]. Recently, magnetic solitonic modes 
in nano-oscillators were observed [8–10], and dissipative magnetic 
droplet solitons were theoretically predicted in Ref. [11] and then 
experimentally found and studied [12]. Moreover, dark solitons and 
their interactions were also studied [13–16]. Lately, the effects of 
disturbances of the kick (tilt) type on two-dimensional dissipative 
solitons were also studied [17,18]. In addition to ordinary single 
soliton solutions, there exist other localized states [19–24]. In par-
ticular, there are complex time-dependent localized states, called 
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breathers [25–29], which are solitons such that their amplitude and 
width oscillate non-monotonically. In this work we deal with ordi-
nary solitons.

We call antisoliton the soliton with the opposite polarity of a 
given soliton. Parametrically excited soliton–antisoliton systems (or 
double-solitons of opposite polarity) were observed and numeri-
cally studied in oscillating water channels of finite length showing 
a repulsive behavior and synchronous oscillations [30]. We study 
the soliton–antisoliton precession states of an anisotropic easy-
plane ferromagnetic wire subject to a combined, constant and os-
cillatory, applied magnetic field. In order to achieve this goal, we 
perform numerical simulations to characterize the interaction and 
to obtain the region of existence of these localized solutions in 
the space of parameters. Additionally, we take advantage of the as-
sociated amplitude equation to compare numerical results and to 
obtain an approximate analytical description to the interaction law 
of these systems.

2. Theoretical model

In order to study the dynamics of the macroscopic magnetiza-
tion, m, in the continuous framework, we use the standard ap-
proach given by the Landau–Lifshitz–Gilbert (LLG) equation [31]

∂m

∂t
= −m × Heff + λm × ∂m

∂t
. (1)

We consider the magnetization of a long ferromagnetic anisotropic 
wire of length L oriented along the ẑ axis such that the normal-
ized magnetization field is given by m = m(z, t), where z and 
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Fig. 1. Instantaneous profiles of magnetization m(z, t) (left) and complex amplitude 
A(Z , t) (right) at t = 77.488 for the soliton–antisoliton system with parameters ν =
−0.198, h0 = 0.394, d(0) = 1.59, f = 1.00, and k0 = 0.

t stand for the space coordinate and time, respectively. The ef-
fective torque field is given by Heff = ∇2m − β(m · ẑ)ẑ + hext , 
where the Laplacian term accounts for the coupling of the mag-
netization with the first neighbors, β > 0 (easy-plane) measures 
the anisotropy along the ẑ axis, and hext is the external magnetic 
field, which comprises both, a constant and an oscillatory part, 
hext = (hc + h0 cos(Ωt))x̂, where {hc,h0,Ω} are constants. Here λ
denotes the dimensionless phenomenological Gilbert damping co-
efficient which is a material property. Throughout this manuscript 
and as given in Ref. [29], we use dimensionless quantities hav-
ing scaled the magnetization and magnetic fields by the satura-
tion magnetization Ms; the time t by Ts = 1/γ0 Ms , where γ0 =
2.2 × 105 A−1ms−1 is the electron gyromagnetic ratio [31]; and 

the space coordinates r by the exchange length �ex =
√

2A/μ0M2
s , 

where A is the exchange stiffness constant. In the long wire 
approximation, the dimensionless anisotropy parameter becomes 
β = −(1/2 + 2Ku/μ0M2

s ), where Ku is the uni-axial anisotropy 
constant and the 1/2 term corresponds to the dipole field con-
tribution [32]. Taking, e.g., material values for CsNiF3 [33–35]: 
Ms = 2.2 × 105 A/m, Ku = −1.2 × 106 J/m3, A = 0.8 pJ/m, we 
have �ex = 5 nm, Ts = 20 ps, and β = 39.

A simple homogeneous state of model (1) is m = x̂, which rep-
resents a uniform magnetization parallel to the magnetic forcing. 
Small perturbations of this homogeneous state are characterized by 
damped dispersive waves, with frequencies close to the natural fre-
quency Ω0 = √

hc(hc + β). When the wire is forced at about twice 
this frequency, Ω ≡ 2(Ω0 + ν), ν being the detuning parameter, 
this uniform state becomes unstable by means of an oscillatory in-
stability. This bifurcation gives rise to a uniform attractive periodic 
solution, which corresponds to a parametric resonance [23]. More 
precisely, the bifurcation occurs at h2

0,c = (4Ω0)
2[ν2 + (λq/2)2]/β2

with q = β + 2hc ; this relationship defines the first Arnold tongue. 
Close to this parametric resonance the simplest description to our 
magnetic system can be given by an amplitude equation of the en-
velope of the z-component of m: mz ∝ Re(A exp(i(Ω0 + ν)t)) + ..., 
where the complex amplitude A(Z , t) satisfies

∂t A = −(iν + μ)A − i A|A|2 + γ Ā − i∂2
Z A, (2)

where μ = λq/2, γ = βh0/4Ω0 and Z = √
2Ω0/qz. The last equa-

tion is known as the parametrically driven and damped nonlinear 
Schrödinger equation (PDDNLS) [4,5]. In general, amplitude equa-
tions give a qualitatively correct description, although often quan-
titative agreement is not obtained [5]. Below the first Arnold 
tongue, and for negative detuning values, Eqs. (1) and (2) ad-
mit single soliton and antisoliton solutions [4,5] which consist 
of single up and down bump localized structures, respectively. 
We study numerically the interaction between soliton–antisoliton 

Fig. 2. (Color online.) Spatio-temporal maps of the transverse magnetization, (m2
y +

m2
z )

1/2 (frames (a), (c) and (e)), and complex amplitude modulus, |A| (frames (b), 
(d) and (f)), for the soliton–antisoliton systems with parameters ν = −0.198 and 
h0 = 0.394. (a) and (b): Repulsive interaction for d(0) = 1.59, f = 1.00, and k0 = 0. 
(c) and (d): Complete annihilation for d(0) = 1.58, f = 1.00, and k0 = 0. (e) and
(f): Partial annihilation for d(0) = 1.59, f = 0.99, and k0 = 0.

Fig. 3. Characteristic time for annihilation with f = 1 (left), and regions of complete 
annihilation (I), partial annihilation (II), and soliton–antisoliton repulsive interaction 
(III) (right) for the soliton–antisoliton system with parameters ν = −0.198, h0 =
0.394, and k0 = 0. These regions are the same for LLG and PDDNLS models.

pairs. However we also use Eq. (2) to construct an approximate 
model in order to give, when possible, a quantitative description of 
the interaction. Let us describe in some detail this model: Writing 
the amplitude in the polar form, A = R exp(iθ), Eq. (2) becomes 
the system

∂t R

R
= −μ + 2∂Z θ

∂Z R

R
+ ∂2

Z θ + γ cos(2θ), (3a)

∂tθ = −ν − R2 − ∂2
Z R

R
+ (∂Z θ)2 − γ sin(2θ). (3b)
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