Physics Letters A 374 (2010) 3599-3602

www.elsevier.com/locate/pla —_—

Contents lists available at ScienceDirect

Physics Letters A

P

Optimal choices of reference for a quasi-local energy

Ming-Fan Wu?P, Chiang-Mei Chen®"*, Jian-Liang Liu®P, James M. Nester ®-:€

@ Department of Physics, National Central University, Chungli 320, Taiwan

b Center for Mathematics and Theoretical Physics, National Central University, Chungli 320, Taiwan

€ Graduate Institute of Astronomy, National Central University, Chungli 320, Taiwan

ARTICLE INFO ABSTRACT

Article history:

Received 4 June 2010

Received in revised form 2 July 2010
Accepted 2 July 2010

Available online 14 July 2010
Communicated by P.R. Holland

Keywords:

Quasi-local energy
Covariant Hamiltonian
Hamiltonian boundary term
Reference spacetime

We propose a program for determining the reference for the covariant Hamiltonian boundary term quasi-
local energy and test it on spherically symmetric spacetimes. For different observers the quasi-local
energy can be positive, zero, or even negative, however the maximum value is positive for both the
Schwarzschild and FLRW spacetimes.
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1. Introduction

An outstanding fundamental problem in general relativity is
that there is no proper definition for the energy density of grav-
itating systems. (This can be understood as a consequence of
the equivalence principle.) The modern concept is that gravita-
tional energy should be non-local, more precisely quasi-local, i.e.,
it should be associated with a closed two-surface (for a compre-
hensive review see [1]). Here we consider one proposal based on
the covariant Hamiltonian formalism [2] wherein the quasi-local
energy is determined by the Hamiltonian boundary term. For a
specific spacetime displacement vector field on the boundary of
a region (which can be associated with the observer), the quasi-
local energy—defined as the value of the Hamiltonian boundary
term—depends not only on the dynamical values of the fields on
the boundary but also on the choice of reference values for these
fields. Thus a principal issue in this formalism is the proper choice
of reference spacetime for a given observer. Here we test a spe-
cific proposal for fixing the Hamiltonian boundary term reference
values.

It is generally accepted that the total energy for an asymptot-
ically flat gravitating system should be non-negative and should
vanish only for Minkowski space (this is required for stability, see,
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e.g., [3]; for proofs of this property for GR see [4,5]). In view of
this it has been natural to regard these properties as also be-
ing desirable for a good quasi-local energy [1,6,7]. The idea that
a suitable reference should be the one which gives the mini-
mal energy then followed quite naturally. We have proposed us-
ing this approach to choose the optimal reference for the covari-
ant Hamiltonian boundary term. Here we consider this optimal
choice program for both static and dynamic spherically symmet-
ric spacetimes (the most important test cases). Specifically, for
the Schwarzschild and the Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetimes, we found the resultant quasi-local energies can
be positive, zero, or even negative for different observers. However,
for both cases, there is one observer who would measure the max-
imum energy, and for this observer the associated energy is posi-
tive. Furthermore we find that this energy-extremization program
(at least for these spherically symmetric systems) is equivalent to
matching the geometry at the two-sphere boundary, which pro-
vides for a simple interpretation of the displacement vector.

2. The Hamiltonian formulation

We begin with a brief review of the covariant Hamiltonian for-
malism as developed by our research group [8-12] (for some ad-
ditional developments along similar lines see [13,14]). A first order
Lagrangian 4-form for a k-form field ¢ can be expressed as

L=dp Ap— A(p, p). (M

The action should be invariant under local diffeomorphisms, which
infinitesimally correspond to a displacement along some vector
field N. From Noether’s theorem there is a conserved translational
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current which can be written as a 3-form linear in the displace-
ment vector plus a total differential:

H(N) := Exg A p — inL = N*H,, +dB(N). )

Here H, = —i @ A % + g% Aiup with ¢ := (=1)¥; this iden-
tity is a necessary consequence of local diffeomorphism invariance
(i.e., symmetry for non-constant N*). Consequently 7, vanishes
on shell; hence the value of the Hamiltonian—the conserved quan-
tity associated with a local displacement N and a spatial region
X' —is determined by a 2-surface integral over the region’s bound-
ary:

E(N, %) ::/H(N):fB(N). (3)
X b

For any choice of N this expression defines a conserved quasi-local
quantity. Different choices of boundary term correspond to differ-
ent boundary conditions.

Einstein’s gravity theory, general relativity (GR), can be formu-
lated in several ways. For our purposes the most convenient is
to take the orthonormal coframe 9* = 9", dx* and the connec-
tion one-form w%g = I'% gy, dx* as the geometric potentials. More-
over we take the connection to be a priori metric compatible:
Dgup :=dgup — 0¥ «&yp — Y gguy = 0. Restricted to orthonormal
frames where the metric components are constant, this condition
reduces to the algebraic constraint w*# = w!®fl,

We consider the vacuum (source free) case for simplicity. GR
can be obtained from the first order Lagrangian 4-form

1
ﬁGR:Q“ﬂ/\paﬁ+Dﬁ“/\‘L’M—V“ﬂ/\(,Oa,g—ﬂflaﬂ) (4)

where 2% :=dw®g +w%, Aw? g is the curvature 2-form, DY :=
dot +wt, ADY is the torsion 2-form, and n®f- :=*W* AP A--.)
is the dual form basis. The 2-forms £2%#, V*# and pyp are anti-
symmetric. We take « := 87 G/c* = 8. Several possible bound-
ary terms were identified, each associated with a distinct type of
boundary condition. In [12] a “preferred boundary term” (it has a
certain covariant property, directly gives the Bondi energy flux, and
has a positive total energy proof) for GR was identified:

1 _
B(N) = ﬁ(Aa)‘)‘ﬂ Ainne? + DgNY AngP), (5)
where A indicates the difference between the dynamic and ref-
erence values and Dg is the reference covariant derivative. The
reference values can be determined by pullback from an embed-
ding of the boundary into a suitable reference space.

3. The energy-extremization program

Here we explicitly formulate the extremization program for
static spherically symmetric spacetimes. The Schwarzschild-like
metric in “standard” spherical coordinates is given by

ds? = —Adt? + A" Vdr? + 2 d@2, (6)

where A = A(r) and d2? = df? + sin?0dgp?. However, there
are other favorable coordinate choices for the Schwarzschild
metric (e.g., Painlevé-Gullstrand, Eddington-Finkelstein, Kruskal-
Szekeres). In order to accommodate most well-known coordinates,
we consider a more general version of the Schwarzschild-like met-
ric via a coordinate transformation t = t(u,v), r = r(u,v); the
metric becomes

ds? = — (At — A7'r2) du? + 2(A"'ryry — Atyty) dudv
+ (A2 — A} dv? + 17 de2;. (7)

The Minkowski spacetime
ds?> = —dT? + dR? + R*d®? + R?sin* © do? (8)

is a natural choice for the reference. However, the essential issue
of the reference choice is the identification between the reference
and physical spacetime coordinates. A legitimate approach for the
spherically symmetric case is to assume T = T(u,v), R = R(u,v),
® =0, ® = ¢ along with Rg := R(tp,r9) = ro; this symmetrically
embeds a neighborhood of the two-sphere boundary S at (tg, o)
into the Minkowski reference such that the two-sphere boundary
is embedded isometrically. Assume that the displacement vector

N =N"9, + N3, = N'9; + N9, = NT oy + NRog (9)

is future timelike and the orientation is preserved under dif-
feomorphisms, ie. /—o :=t,ry — tyry >0 and X~ ! := TyR, —
TyRy, > 0. The second term of Eq. (5) vanishes for spherically sym-
metric spacetimes; the quasi-local energy can then be evaluated to
be

r
E:i(N“B—i—N"C)«/—a, (10)
B=XTy+g""(Ry —2ry) + 8"V (Ry — 2ry), (11)
C=XTy+g"2ry — Ry) + "’ 2ry — RY), (12)

where the subscripts indicate partial differentiations. Note that the
quasi-local energy is evaluated on the boundary two-sphere S; the
variables appearing in Eq. (10) and in the following are also evalu-
ated on S. Each choice of the embedding variables {T, Ty, Ry, Ry}
means a different embedding, hence a different reference. For any
given displacement vector we extremize the energy with respect
to the embedding variables; we get four equations, but only three
are independent:

N“R,+ N'R, =NR =0, (13)
X2Ty (N“Ty + N"Ty) — o (guvN" + gywN') =0, (14)
X2Ty(N"Ty + N'Ty) — o™ (guuN" + guN") = 0. (15)

A useful combination (15) x R, — (14) x R, gives

X(N"Ty +N'Ty) +a ' [(guN" + gvwN")Ry

_(guuNu+gquv)Rv]:0- (16)

From Eq. (13) we get
NY T u v N*

Ru——mRv, N :=N"T,+N TV:X—RV; (17)
then R, can be found from Eq. (16):
NY Ry 5  a(N%)?
— —a  —g(N,N)=0 R = . 18
R, ¢ nesMN=0= K=o wn (18)

We require the displacement vector to be future timelike, i.e.,
NT > 0 and N* > 0, and the orientation to be preserved, i.e., the
Jacobians are positive. Then R, should be positive, and therefore

Ry= |[—% Nt Ry=-—|—% NV, (19)
g(N,N) g(N,N)

Now we calculate the energy. Using Eq. (19) we get

V=a(N"B+N"C) =2(,/—g(N. N) — ANY), (20)

where the explicit metric is used in the calculation. Choose N to be
unit timelike on the two-sphere, ie., —1 = g(N, N) = gy, (N¥) +
28,y NUNY + g, (NV)2, then the quasi-local energy for any given
future timelike displacement vector N reduces to

E=r(1-AN"), (21)
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