
Physics Letters A 374 (2010) 3629–3634

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

On the periodic solutions for both nonlinear differential and difference equations:
A unified approach

Engui Fan a,∗, Kwok Wing Chow b

a School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Science, Fudan University, Shanghai, 200433, PR China
b Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 May 2010
Received in revised form 29 June 2010
Accepted 5 July 2010
Available online 10 July 2010
Communicated by R. Wu

Keywords:
Differential and difference equation
Hirota’s bilinear method
Riemann theta function
Periodic wave solution
Soliton solution

A direct and unifying scheme for disclosure of periodic wave solutions of both nonlinear differential and
difference equations is presented. The scheme is based on Hirota’s bilinear form and certain Riemann
theta function formulae. The relations between the periodic wave solutions and soliton solutions are
rigorously established.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The bilinear derivative method developed by Hirota is a pow-
erful and direct approach to construct exact solution of nonlin-
ear equations. Once a nonlinear equation is written in bilinear
forms by a dependent variable transformation, then multi-soliton
solutions are usually obtained [1–5]. Based on the use of Hirota
method and theta function identities, one of the authors, Chow
proposed a method to obtain doubly periodic solutions in terms
of rational function of theta functions [6–9]. Nakamura proposed a
convenient way to construct a kind of quasi-periodic solutions of
nonlinear equations, where the periodic wave solutions of the KdV
equation and the Boussinesq equation were obtained [10,11]. Such
both methods indeed exhibit some advantages. For example, they
don’t need any Lax pairs and Riemann surface for the considered
equation, allow the explicit construction of multi-periodic wave so-
lutions, only rely on the existence of the Hirota’s bilinear form, as
well as all parameters appearing in Riemann matrix are arbitrary.
There is a key difference between Chow’s method and Nakamura’s
method, Chow’s method can obtain rational solutions in term of
theta function which is, however, not multi-periodic. Nakamura’s
method can obtain multi-periodic wave solutions interm of theta
function which, however, is not rational form. Recently, further
development of Nakamura’s method was made to investigate the
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discrete Toda lattice, (2 + 1)-dimensional Kadomtsev–Petviashvili
equation, Bogoyavlenskii’s breaking soliton equation and Hirota
equation [10–17]. However, some repetitive recursion and com-
putation must be preformed in the construction of periodic wave
solution for each equation.

The motivation of this Letter is to considerably improves the
key steps of the above existing methods. We propose some theta
function bilinear formulae, which actually provide us a direct and
unifying way for applying in a class of nonlinear differential and
difference equations. Once a nonlinear equation is written in bi-
linear forms, then the periodic wave solutions of the nonlinear
equation can be obtained directly by using the formula. More-
over, we propose a simple and effective method to analyze asymp-
totic properties of the periodic solutions. As illustrative examples,
we consider (2 + 1)-dimensional modified Bogoyavlenskii–Schiff
equation and differential–difference KdV equation, whose periodic
wave solutions seem not available to the knowledge of the au-
thors.

The organization of this Letter is as follows. In Section 2, we
briefly introduce a Hirota bilinear operator and a Riemann theta
function. In particular, we provide a key formula for constructing
periodic wave solutions for both differential and difference equa-
tions. As applications of our method, in Sections 3 and 4, we con-
struct double periodic wave solutions to the (2 + 1)-dimensional
modified Bogoyavlenskii–Schiff equation and differential–difference
KdV equation, respectively. In addition, it is rigorously shown that
the double periodic wave solutions tend to the soliton solutions
under small amplitude limits.
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2. Hirota bilinear operator and Riemann theta function

To fix the notations we recall briefly some notions that will be
used in this Letter. The Hirota bilinear operators Dx , Dt and Dn

are defined as follows:

Dm
x Dk

t f (x, t) · g(x, t)

= (∂x − ∂x′)m(∂t − ∂t′)
k f (x, t)g

(
x′, t′)∣∣

x′=x,t′=t,

eδDn f (n) · g(n) = eδ(∂n−∂ ′
n) f (n)g

(
n′)∣∣

n′=n = f (n + δ)g(n − δ),

cosh(δDn) f (n) · g(n) = 1

2

(
eδDn + e−δDn

)
f (n) · g(n),

sinh(δDn) f (n) · g(n) = 1

2

(
eδDn − e−δDn

)
f (n) · g(n).

Proposition 1. The Hirota bilinear operators Dx, Dt and Dn have prop-
erties [1–5]

Dm
x Dk

t eξ1 · eξ2 = (α1 − α2)
m(ω1 − ω2)

keξ1+ξ2 ,

eδDn eξ1 · eξ2 = eδ(ν1−ν2)eξ1+ξ2 ,

cosh(δDn)eξ1 · eξ2 = cosh
[
δ(ν1 − ν2)

]
eξ1+ξ2 ,

sinh(δDn)eξ1 · eξ2 = sinh
[
δ(ν1 − ν2)

]
eξ1+ξ2 ,

where ξ j = α j x + ω jt + ν jn + σ j , and α j , ω j , ν j , σ j , j = 1,2 are pa-
rameters and n ∈ Z is a discrete variable. More generally, we have

F (Dx, Dt, Dn)eξ1 · eξ2

= F
(
α1 − α2,ω1 − ω2,exp

[
δ(ν1 − ν2)

])
eξ1+ξ2 , (2.1)

where F (Dx, Dt , Dn) is a polynomial about operators Dx, Dt and Dn.
This properties are useful in deriving Hirota’s bilinear form and con-
structing periodic wave solutions of nonlinear equations.

In the following, we introduce a general Riemann theta func-
tion and discuss its periodicity, which plays a central role in the
construction of periodic solutions of nonlinear equations. The Rie-
mann theta function reads

ϑ

[
ε
s

]
(ξ, τ ) =

∑
m∈Z

exp
{

2π i(ξ + ε)(m + s) − πτ(m + s)2}.
(2.2)

Here the integer value m ∈ Z, complex parameter s, ε ∈ C , and
complex phase variables ξ ∈ C ; The τ > 0 which is called the pe-
riod matrix of the Riemann theta function.

In the definition of the theta function (2.2), for the case s =
ε = 0, hereafter we use ϑ(ξ, τ ) = ϑ

[
0
0

]
(ξ, τ ) for simplicity. More-

over, we have ϑ
[ ε

0

]
(ξ, τ ) = ϑ(ξ + ε, τ ).

Definition 1. A function g(t) on C is said to be quasi-periodic in t
with fundamental periods T1, . . . , Tk ∈ C, if T1, . . . , Tk are linearly
dependent over Z and there exists a function G(y1, . . . , yk), such
that

G(y1, . . . , y j + T j, . . . , yk) = G(y1, . . . , y j, . . . , yk),

for all y j ∈ C, j = 1, . . . ,k,

G(t, . . . , t, . . . , t) = g(t).

In particular, g(t) is called double periodic as k = 2, and it becomes
periodic if and only if T j = m j T , j = 1, . . . ,k.

Let’s first see the periodicity of the theta function ϑ(ξ, τ ).

Proposition 2. (See [18,19].) The theta function ϑ(ξ, τ ) has the periodic
properties

ϑ(ξ + 1 + iτ , τ ) = exp(−2π iξ + πτ)ϑ(ξ, τ ). (2.3)

We regard the vectors 1 and iτ as periods of the theta function ϑ(ξ, τ )

with multipliers 1 and exp(−2π iξ + πτ), respectively. Here, iτ is not
a period of theta function ϑ(ξ, τ ), but it is the period of the functions
∂2
ξ ln ϑ(ξ, τ ), ∂ξ ln[ϑ(ξ + e, τ )/ϑ(ξ + h, τ )] and ϑ(ξ + e, τ )ϑ(ξ −

e, τ )/ϑ(ξ + h, τ )2 .

Proposition 3. The meromorphic functions f (ξ) on C are as follow

(i) f (ξ) = ∂2
ξ ln ϑ(ξ, τ ), ξ ∈ C,

(ii) f (ξ) = ∂ξ ln ϑ(ξ+e,τ )
ϑ(ξ+h,τ )

, ξ, e,h ∈ C,

(iii) f (ξ) = ϑ(ξ+e,τ )ϑ(ξ−e,τ )

ϑ(ξ,τ )2 , ξ, e,h ∈ C,

then in all three cases (i)–(iii), it holds that

f (ξ + 1 + iτ ) = f (ξ), ξ ∈ C, (2.4)

that is, f (ξ) is a double periodic function with 1 and iτ .

Proof. By using (2.3), it is easy to see that

∂ξϑ(ξ + 1 + iτ , τ )

ϑ(ξ + 1 + iτ , τ )
= −2π i + ∂ξϑ(ξ, τ )

ϑ(ξ, τ )
,

or equivalently

∂ξ lnϑ(ξ + 1 + iτ , τ ) = −2π i + ∂ξ lnϑ(ξ, τ ). (2.5)

Differentiating (2.5) with respective to ξ again immediately proves
the formula (2.4) for the case (i). The formula (2.4) can be proved
for the cases (ii) and (iii) in a similar manner. �
Theorem 1. Suppose that ϑ

[
ε′
0

]
(ξ, τ ) and ϑ

[ ε

0

]
(ξ, τ ) are two Rie-

mann theta functions, in which ξ = αx + ωt + νn + σ . Then Hirota
bilinear operators Dx, Dt and Dn exhibit the following perfect properties
when they act on a pair of theta functions

Dxϑ

[
ε′
0

]
(ξ, τ ) · ϑ

[
ε
0

]
(ξ, τ )

=
∑

μ=0,1

∂xϑ

[
ε′ − ε
−μ/2

]
(2ξ,2τ )

∣∣∣∣
ξ=0

ϑ

[
ε′ + ε
μ/2

]
(2ξ,2τ ), (2.6)

exp(δDn)ϑ

[
ε′
0

]
(ξ, τ ) · ϑ

[
ε
0

]
(ξ, τ )

=
∑

μ=0,1

exp(δDn)ϑ

[
ε′ − ε
−μ/2

]
(2ξ,2τ )

∣∣∣∣
ξ=0

ϑ

[
ε′ + ε
μ/2

]
(2ξ,2τ ),

(2.7)

where the notation
∑

μ=0,1 represents two different transformations
corresponding to μ = 0,1. The bilinear formula for t is the same as (2.6)
by replacing ∂x with ∂t .

In general, for a polynomial operator F (Dx, Dt , Dn) with respect to
Dx, Dt and Dn, we have the following useful formula

F (Dx, Dt, Dn)ϑ

[
ε′
0

]
(ξ, τ ) · ϑ

[
ε
0

]
(ξ, τ )

=
∑
μ

C
(
ε′, ε,μ

)
ϑ

[
ε′ + ε
μ/2

]
(2ξ,2τ ), (2.8)

in which, explicitly
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