Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Manganese Dioxide-based Bifunctional Oxygen Reduction/Evolution Electrocatalysts: Effect of Perovskite Doping and Potassium Ion Insertion

P. Hosseini Benhangi^a, A. Alfantazi^b, E. Gyenge^{a,*}

^a Department of Chemical and Biological Engineering & Clean Energy Research Center, The University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6 T 123

^b Department of Materials Engineering, The University of British Columbia, Vancouver, 6350 Stores Road, Vancouver, BC, Canada V6 T 124

ARTICLE INFO

Article history: Received 25 September 2013 Received in revised form 9 December 2013 Accepted 12 December 2013 Available online 16 January 2014

Keywords: Bifunctional oxygen catalyst Oxygen evolution Oxygen reduction Alkaline fuel cells Manganese dioxide

ABSTRACT

Non-precious metal bifunctional oxygen reduction and oxygen evolution reaction (ORR and OER, respectively) catalysts are of great interest for rechargeable metal/air batteries and regenerative alkaline fuel cells. We investigate the initial stage activities and the electrocatalytic durability of bifunctional catalysts composed of MnO₂ and perovskite (LaNiO₃ or LaCoO₃) in a 1:1 weight ratio. Gas diffusion electrodes (GDE) with a catalyst layer composed of MnO₂:co-catalyst (LaNiO₃ or LaCoO₃):Vulcan XC-72 were prepared and studied in O₂ saturated 6 M KOH. The initial stage bifunctional activities of MnO₂-LaCoO₃ and MnO₂-LaNiO₃ are markedly superior compared to either MnO₂ or perovskite alone, demonstrating a synergistic effect. Furthermore, we show for the first time that the degradation of the bifunctional electrocatalytic activity of the MnO₂-perovskite electrodes during extensive potential cycling can be fully restored by resting the electrodes at open-circuit potential in 6 M KOH. A hypothesis is proposed to explain this catalytic promotion and 'healing' effect based on XPS results showing potassium ion incorporation in the electrocatalyst structure. Lastly, a thorough comparison of the results obtained in the present work with those reported in the literature with a variety of bifunctional catalysts is presented, demonstrating the effectiveness of the MnO₂-perovskite electrodes.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The development of a bifunctional catalyst for both oxygen reduction (ORR) and evolution (OER) reactions is of great interest for electrochemical power sources such as regenerative fuel cells and rechargeable metal/air batteries [1–3]. Manganese dioxide has been intensely investigated as a catalyst for ORR in alkaline batteries and fuel cells due to a unique combination of properties, i.e., low cost, abundance, environmental friendliness and promising electrocatalytic activity for ORR [4–7]. Among the commercially readily available MnO₂ types, Gyenge and Drillet have demonstrated that the Sigma-Aldrich MnO₂ (structurally a γ -MnO₂) is the most active for ORR [4]. However, pertinent to the bifunctional cathode, some issues such as low electrocatalytic activity for OER, poor recharging and complex charge-discharge behavior, limits the application of MnO₂ as a lone catalyst for both OER and ORR [2,8,9].

Another important class of non-precious metal electrocatalysts for oxygen cathodes are perovskites. These are catalysts of great diversity because of the wide range of ions and valences that the

* Corresponding author. E-mail address: egyenge@chbe.ubc.ca (E. Gyenge).

structure can accommodate [10–12]. Different types of perovskites have been synthesized and reported to possess improved physical properties as well as good electrocatalytic activity for ORR and OER in alkaline electrolytes [12-17]. Lee et al. revealed that La_{0.6}Ca_{0.4}CoO₃ prepared by the amorphous citrate precursor process, calcined at 650 °C followed by rapid quenching, has a high surface area of 33 $m^2 g^{-1}$. They reported that $10 mg cm^{-2}$ of this catalyst can provide a significant bifunctional performance, i.e. - 280 mA cm^{-2} for ORR and 300 mA cm^{-2} for OER at 600 and 1600 mV (vs. RHE) in 30 wt% KOH at 298 K, respectively, when the GDEs are exposed to pure oxygen [16]. In another study, Li et al. reported fast ORR kinetics for La_{0.6}Ca_{0.4}CoO₃-Carbon composites with low Tafel slope of -60 mV dec⁻¹ and relatively high exchange current density of 5.8×10^{-11} A cm⁻² in O₂-saturated 6 M KOH [17]. Even though perovskite-type oxides show high electrocatalytic activity toward OER, their relatively low conductivity and surface area, as well as poor electrocatalytic activity toward ORR, compared to other nonprecious compounds like MnO₂, limits their use as bifunctional electrodes in concentrated alkaline solutions [4,17].

The present study is aimed at the development of highly active and durable MnO_2 -based catalysts for both ORR and OER by doping MnO_2 (Sigma-Aldrich Inc.) with two perovskite-type oxides, i.e. LaNiO₃ and LaCoO₃, respectively. The performance of

^{0013-4686/\$ –} see front matter © 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.electacta.2013.12.102

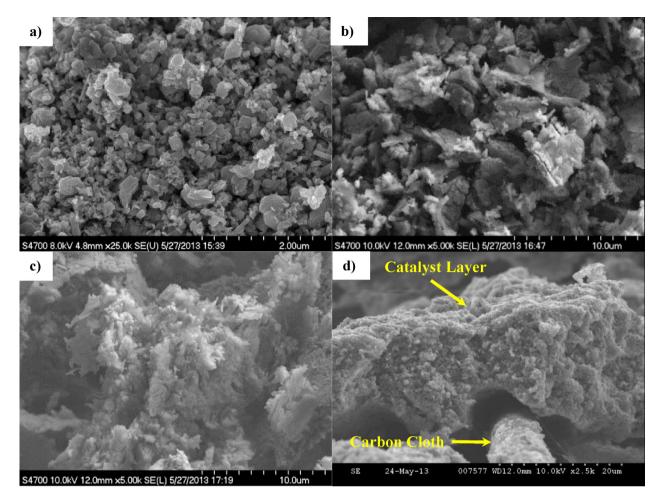


Fig. 1. SEM images of: a) commercial Sigma-Aldrich MnO₂ powder, b) synthesized LaCoO₃ powder, c) synthesized LaNiO₃ powder and d) Catalyst layer consisting of MnO₂-LaCoO₃ sprayed on a 40wt% PTFE treated carbon cloth.

the mixed catalysts toward OER and ORR and the promoter role of potassium species are investigated by a combination of surface structural characterization methods and half-cell electrochemical techniques.

2. Experimental Methods

2.1. Preparation of the Perovskite-MnO₂/Carbon cloth gas diffusion electrode (GDE)

Two different co-catalysts, i.e., LaNiO₃ and LaCoO₃, were synthesized via a co-precipitation method [18]. The LaNiO₃ powder was made by preparing a solution of 0.2 M lanthanum (III) nitrate hexahydrate (La(NO₃)₃.6 H₂O) and 0.2 M nickel(II) nitrate hexahydrate (Ni(NO₃)₂.6 H₂O) and adding ammonium hydroxide 5% (NH₄OH) as a precipitating agent until the pH reached 9.25. The solution was then heated 3 hrs at 70 °C followed by a heating sequence of: 3 hrs at 110 °C, 1 hr at 300 °C and another 2 hrs at 700 °C in air using a box furnace. Afterwards, the solution was left to cool down to room temperature in the furnace. The heating rate for all segments was 5 °C/min. For LaCoO₃ synthesis, a similar procedure was carried out except that Ni(NO₃)₂.6 H₂O was replaced with cobalt(II) nitrate hexahydrate (Co(NO₃)₂.6 H₂O).

In order to produce the MnO_2 -perovskite/carbon cloth GDEs, various catalyst inks were prepared by 1 hr sonication of a mixture composed of MnO_2 (Sigma-Aldrich GmbH manganese (IV) dioxide), Vulcan XC-72, co-catalysts (i.e. LaNiO₃ or LaCoO₃, whenever applicable), isopropanol, water, 5 wt% Nafion solution and

60 wt% PTFE (polytetrafluoroethylene) suspension. The MnO₂:co-catalyst:Vulcan weight ratio in the catalyst layer was always 1:1:1. The Vulcan:isopropanol:water weight ratio was kept at 1:50:16 in all catalyst inks. Furthermore, the PTFE and Nafion content of the catalyst layer was the same, namely, 14.8 wt% each, for all samples. Next, specified volume of the catalyst ink (10-20 μ L) was drop-casted on a 6 mm diameter punch cut 40% PTFE treated carbon cloth from Fuel Cell Earth Co. such that to achieve a MnO₂ and pervoskite loadings of 0.5 mg cm⁻² each. Afterwards, the GDEs were dried in an oven at 70 °C for 1 hr.

2.2. Electrochemical Measurements

A guick-fit exchangeable sample holder from Radiometer Analytical (#A35T450) was used to insert the circular GDE (geometric area 0.283 cm²) in a rotating disk electrode (RDE) test setup for electrochemical measurements. Cyclic voltammetry tests were performed in O₂ saturated 6 M KOH at 293 K using a conventional three-electrode setup where the working electrode was the GDE, the reference electrode was Hg/HgO/0.1 M KOH (abbreviated as MOE), and the counter electrode was Pt mesh. The electrodes were connected to a computer-controlled VoltaLab 80 bi-potentiostat and its associated RDE set-up. The electrocatalytic activity of the doped MnO₂-based catalysts for both OER and ORR was investigated in the potential range between -700 and 750 mV vs. MOE with a scan rate of 5 mV s^{-1} . The durability of the electrodes was also investigated during one hundred cycles in the potential range of -300 to 700 mV in 6 M KOH at 293 K using the same scan rate of $5 \,\mathrm{mV}\,\mathrm{s}^{-1}$.

Download English Version:

https://daneshyari.com/en/article/185991

Download Persian Version:

https://daneshyari.com/article/185991

Daneshyari.com