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We discuss the dynamical instability of cylindrically symmetric isotropic geometry under the effect of
electromagnetic field. The interior geometry of the dynamical collapse is matched with an exterior
geometry through Darmois junction conditions. The perturbation scheme is used to describe the collapse
equation and categorize the Newtonian and post-Newtonian regions in radiating as well as non-radiating
eras. It is concluded that energy density, pressure, radiation density and electromagnetic field control the
stability of the cylinder leading to more unstable configuration.
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1. Introduction

General relativity and relativistic astrophysics have provided
useful insights while discussing the instability of the massive stars
in recent decades. Strong gravitational effects play vital role in
the dynamics of compact objects. The problem of dynamical in-
stability is closely associated with formation and evolution of self-
gravitating objects. If a stationary black hole is stable under per-
turbations, such a solution describes a possible final state of dy-
namical evolution of a gravitating system.

During the collapse, a large amount of energy radiates which
gradually increases during the evolution of self-gravitating objects.
This radiated energy can be described by two approximations: dif-
fusion and free streaming approximations. The physical parameters
like dissipation can affect the stability of self-gravitating stars. The
instability range increases by the dissipating quantities at Newto-
nian (N) regions and makes the system stable at relativistic correc-
tions.

It is true that extensions from spherical to other kind of sym-
metries provide important information about self-gravitating fluids.
In particular, cylindrical systems in general relativity puzzle rela-
tivists since the time Levi-Civita found its vacuum solution. Dif-
ferent physical aspects of fluids play a key role in the dynamical
instability and evolution of self-gravitating systems. The motivation
for including charge in the stability analysis of compact objects is
well justified in the light of some theoretical evidences based on
new mechanisms allowing the presence of huge electric charge in
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self-gravitating systems, e.g., the possibility of huge electric field in
strange stars.

The inclusion of electromagnetic field provides an interesting
outcome to discuss the stability of self-gravitating objects. Many
attempts have been made to describe the interaction between elec-
tromagnetic and gravitational fields. Bekenstein [1] was the first
who extended the work from neutral to charged case. Since then
a large amount of work has been done in the scenario of elec-
tromagnetic field [2]. The dynamics of non-adiabatic collapsing
process leads to the emission of gravitational radiations in the
presence of electromagnetic field [3]. The effects of electromag-
netic field for the dissipative plane collapse with anisotropic fluid
[4] and the dissipative spherical collapse with perfect fluid [5] are
also studied.

Regge and Wheeler [6] furnished the foundation to discuss
the stability regions by providing evidence for the stability of
the Schwarzschild black hole. Chandrasekhar [7] was the pioneer
who discussed the dynamical instability of spherical star with
perfect fluid. Instability range depends upon the critical value 4

3
for isotropic spheres as described by Chadrasekhar. For cylindri-
cal systems, it is based on the critical value 1. However, with the
inclusion of electromagnetic field, the instability range depends
upon the physical parameters like energy density, pressure etc.
Moreover, electromagnetic field increases the instability range and
makes the system more unstable. Recently, we have investigated
the instability range for a restricted class of non-static axial sym-
metry with anisotropic matter configuration [8]. It is found that
the adiabatic index depends upon the energy density and different
stresses of the fluid distribution and contains static terms of the
axial geometry.

It is interesting to mention here that different ranges of insta-
bility may lead to different patterns of evolution of stars. Different
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authors [9] extended Chandrasekhar work for dissipative fluids.
Chan et al. [10] found that anisotropy and viscosity affect the in-
stability range at N and post-Newtonian (pN) regions. Since then
a lot of work has been done to investigate the dynamical stabil-
ity of spherical stars with isotropic pressure in the interior [11].
Bisnovatyi-Kogan and Tsupko [12] discussed different criterion for
the stability of stars. Roupas [13] studied the dynamical stability of
spherical system with perfect fluid.

The adiabatic index Γ is known to be the key factor to discuss
the dynamical instability whose value is smaller than 4

3 in N limit
for perfect fluid. Sorkin et al. [14] explored the instability of spher-
ical star for the particular case of radiation. Chan et al. [15] studied
the dynamical instability of spherical star model with perfect fluid
and found that this leads to collapse for all values of Γ < 4

3 . Dev
and Gleiser [16] investigated the stability under radial perturbation
of fluid sphere. Boehmer and Harko [17] examined the instability
of the spherical system with perfect fluid in the presence of cos-
mological constant.

Herrera et al. [18] studied the stability of dissipative spherically
symmetric viscous star. They also explored the instability range
of expansion-free spherical geometry using perturbation scheme
and found the independence of Γ in this scenario [19]. Sharif and
Azam [20] have investigated the stability of cylindrical geometry
in Newtonian and post-Newtonian approximations under different
scenarios. Recently, they [21] explored the instability range of the
cylinder for radiative and non-radiative perturbations. In a recent
paper [22], we have examined the role of electromagnetic field on
the stability of the expansion-free cylinder. Sharif and Yousaf [23,
24] discussed the instability ranges of collapsing models with the
help of perturbation scheme in f (R) gravity.

In this paper, we investigate instability of the radiating collaps-
ing cylinder under the effect of electromagnetic field. The plan of
the paper is as follows. Section 2 is devoted to study the matter
distribution. In Section 3, we formulate the Einstein–Maxwell field
equations, the corresponding conservation laws as well as junction
conditions and deduce the instability range through perturbation
scheme. The radiative and non-radiative cases under the effect of
electromagnetic field are also explored. In the last section, we con-
clude our results.

2. Matter distribution and field equations

In this section, we discuss the fluid configuration and construct
field equations under the effect of electromagnetic field. For this
purpose, we take the non-static cylindrical geometry in the interior
region as [25]

ds2− = −W 2(t, r)dt2 + X2(t, r)dr2 + Y 2(t, r)dθ2 + dz2, (1)

where the constraints −∞ < t < ∞, 0 � r < ∞, 0 � θ � 2π ,
−∞ < z < ∞ have been considered on the coordinates of the
cylinder. We consider perfect fluid with radiation in the interior of
the collapsing cylinder described by the energy-momentum tensor
of the form

T −
αβ = (μ + p)vα vβ + pgαβ + εlαlβ, (2)

where μ, p and ε are the energy density, pressure and radiation
density, respectively. Also, vα and lα are the unit four-velocity and
the null four-vector satisfying

lαlα = 0, vα vα = −1.

These quantities in comoving coordinates can be written as

lα = W −1δα
0 + X−1δα

1 , vα = W −1δα
0 .

The energy–momentum tensor for electromagnetic field is

Eαβ = − 1

4π

(
1

4
F γ δ Fγ δ gαβ − F γ

α Fβγ

)
, (3)

where Fαβ = φβ,α −φα,β is an anti-symmetric strength field tensor
and φα corresponds to four-potential.

The Maxwell field equations are

F [αβ;γ ] = 0, F αβ

;β = μ0 Jα,

with Jα and μ0 = 4π as the four-current and magnetic perme-
ability, respectively. The magnetic field will be zero in comoving
coordinate system, as the charge per unit length of the system is
assumed to be at rest. Accordingly, we take the four-potential and
four-current as

φα = φδ0
α, Jα = ζ vα,

here φ and ζ are functions of t as well as r representing the scalar
potential and charge density, respectively. The only non-vanishing
component of the strength tensor is

F10 = −F01 = φ′,

where prime indicates differentiation with respect to r. Using these
values, the Maxwell field equations become
(

∂φ

∂r

)(
W ′

W
− Y ′

Y
+ X ′

X

)
−

(
∂2φ

∂r2

)
= −4πζ W X2, (4)

(
∂φ

∂r

)(
Ẇ

W
− Ẏ

Y
+ Ẋ

X

)
−

(
∂2φ

∂t∂r

)
= 0, (5)

here dot corresponds to differentiation with respect to t . Integra-
tion of Eq. (4) with respect to r gives

∂φ

∂r
= qW X

Y
,

q(r) = 4π
∫ r

0 ζ XY dr is the total amount of charge per unit length
of the cylinder. Also, φ′ identically satisfies Eq. (5). The non-
vanishing components of Eαβ turn out to be

E00 = −π

2
E2W 2, E11 = π

2
E2 X2,

E22 = −π

2
E2Y 2, E33 = −π

2
E2,

where E = q
2πY .

The Einstein–Maxwell field equations corresponding to Eq. (1)
yield

κ

(
μ + ε − π

2
E2

)
W 2 = Ẋ Ẏ

XY
+

(
W

X

)2( X ′Y ′

XY
− Y ′′

Y

)
, (6)

κW Xε = Ẏ ′
Y

− ẊY ′

XY
− Ẏ W ′

Y W
, (7)

κ

(
p + ε + π

2
E2

)
X2 = W ′Y ′

W Y
+

(
X

W

)2(
− Ÿ

Y
+ Ẇ Ẏ

W Y

)
, (8)

κ

(
p − π

2
E2

)
Y 2 =

(
Y 2

W X

)(
Ẇ Ẋ

W 2
− Ẍ

W
− W ′ X ′

X2
+ W ′′

X

)
, (9)

κ

(
p − π

2
E2

)
= − Ẍ

W 2 X
+ W ′′

W X2
− Ÿ

W 2Y

− W ′ X ′

W X3
+ Ẇ Ẏ

W 3Y
+ Ẇ Ẋ

W 3 X
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X3Y
− Ẋ Ẏ

W 2 XY
+ W ′Y ′

W X2Y
+ Y ′′

X2Y
. (10)
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